Definition 1 (Execution). Let π be an error trace of length n. An execution of π is a sequence of states $s_0, s_1...s_n$ such that $s_i, s_{i+1} \vDash T$, where T is the transition formula of $\pi[i]$.

Definition 2 (Blocked Execution). An execution of a trace π of size n is called a blocked execution, if there exists a sequence of states $s_0, s_1...s_j$ where $i < j \leq n$ such that $s_i, s_{i+1} \models T$ where T is the transition formula of $\pi[i]$ and there exists an assume statement in the trace π at position j such that $s_i \neq \text{guard}(\pi[j])$

Definition 3 (Relevant Statement). Let $\pi = st_1, ..., st_n$ be an error trace of length n where st_i is an assignment statement of the form $x := t$. The assignemnt statement at position i is relevant if there exists an execution $s_1, \ldots s_{n+1}$ of π and some value v such that every execution of the trace $x := v; \pi[i + 1, n]$ starting in s_i is has a blocked execution.

Lemma 1. For a program statement st and predicates P and Q , where P is condition that is true before the execution of the statement and Q is a post condition, the following two implications are equivilant(also known as the duality of WP and SP):

$$
SP(P, st) \Rightarrow Q
$$

$$
P \Rightarrow WP(Q, st)
$$

Lemma 2. For a predicate Q and an assignment statement of the form $x := t$ where x is a variable and t is an expression, we have:

$$
WP(Q;havoc(x)) \subseteq WP(Q; x := t)
$$

and

$$
SP(P; x := t) \subseteq SP(P; \text{havoc}(x))
$$

Lemma 3 (IGNORE FOR NOW). For $P := WP(Q, x := t)$ and a set of states R, if $P \cap R \nsubseteq WP(Q, haveoc(x))$ for some Q then $Q \subseteq SP(P, haveoc(x))$.

Proof. We will show that $Q := SP(P; x := t) \subseteq SP(P; havoc(x)) \nsubseteq SP(P; x :=$ t) from which it follows that the first inclusion is strict. The first inclusion is from Lemma 2. It is obvious that a state reachable after $x := t$ is also reachable after $havoc(x)$. Hence $SP(P; x := t) \subseteq SP(P; havoc(x))$.

By assumption $WP(Q; x := t) \cap R \not\subseteq WP(Q, \text{havoc}(x))$, which is equivalent to $WP(Q; x := t) \nsubseteq WP(Q; haveoc(x))$ which by Lemma 1 is equivalent to.

$$
SP(WP(Q; x := t); havoc(x)) \nsubseteq Q
$$

or

$$
SP(P;havoc(x)) \nsubseteq SP(P; x := t)
$$

 \Box

Theorem 1 (Relevancy of an assignment statement). Let π be an error trace of length n and $\pi[i]$ be an assignment statement at position i having the form $x := t$, where x is a variable and t is an expression. Let P and Q be two predicates where $P = \neg WP(False; \pi[i, n]) \cap SP(True; \pi[1, i - 1])$ and $Q =$ $\neg WP(False; \pi[i+1, n])$. The statement $\pi[i]$ is relevant iff:

 $P \neq W P(Q, \text{havoc}(x))$

Proof. Let $P' = WP(Q;havoc(x)) \cap SP(True; \pi[1, i-1])$ and $Q' = SP(P;havoc(x))$. It is obvious that P can also be written as $WP(Q; x := t) \cap SP(True; \pi[1, i-1])$ and Q as $SP(P; x := t)$.

"⇒"

If $\pi[i]$ is relevant, then

$$
P \nRightarrow WP(Q;havoc(x))
$$

Obviously all the transition from P' end up in Q. Relevancy of $x := t$ implies that there is a state in $s \in P$ such that there is a transition from s to $\neg Q$. That would mean:

$$
P \neq P'
$$

$$
P \neq WP(Q;havoc(x))
$$

"⇐" $\pi[i]$ is relevant, if:

$$
P \not\Rightarrow WP(Q;havoc(x))
$$

From lemma 1, we can write:

$$
SP(P; \text{havoc}(x)) \neq Q
$$

$$
Q' \neq Q
$$

This shows the existence of a state s in Q' such that $s \in \neg Q$ and hence a value v for x such that if we replace $x := t$ with $x := v$, then every execution is becoming blocking. Also, from our assumption, it is clear that there exists an execution till P , since P is not empty.

 \Box