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Abstract

Software model checkers are powerful tools for the verification of computer pro-
grams. When they find a violation, the typical way to communicate with the
user is the output of an error trace – a sequence of statements through the pro-
gram that, when executed, leads to an error. The ability to generate an error
trace upon detecting a failing property is widely regarded as one of the major
advantages of model checking in software verification. The diagnostic value of
an error trace in localizing faults and other hidden issues in the program is
undeniable. However, in practice, error traces can very quickly become pro-
hibitively long and easily exceed the human capacity of analysis. We, therefore,
need automatic trace analysis techniques if we wish to extract any value from
an error trace.

This thesis presents one such technique based on the identification of state-
ments that can single-handedly make the trace infeasible. We call such state-
ments aberrant. Aberrant statements allow us to analyze the error trace from
a new and quite useful perspective. In this thesis, we show that one of the
applications of aberrance is in fault localization. The precise definition of aber-
rance not only allow us to locate faulty statements in a feasible error trace but
also gives us a hint on how to fix the error. Another application of aberrant
statements is in the detection of the presence of unvalidated inputs in a pro-
gram, which is considered a typical security vulnerability. We also use aberrant
statements to suppress and later rank error warnings. A large number of error
warnings produced by static verification tools is a major hurdle in their adoption
for debugging by average developers. Ranking error warning will, therefore, be
a step in the right direction. We also discuss the use of aberrant statements in
increasing the output precision of software model checkers.

We have implemented our algorithm to compute aberrant statements in the
program analysis framework Ultimate, which is publicly available. The im-
plementation allows us to test the above-mentioned applications on error traces
from real-world programs.

Keywords

Program Analysis, Error Trace, Fault Localization, Security, Angelic Verifica-
tion
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Deutsche Zusammenfassung

Software Model Checker sind mächtige Werkzeuge für die Überprüfung von
Computer Programmen. Finden diese einen Fehler, so geben sie dem Benutzer
typischerweise ein Fehler-Trace zurück. Ein Fehler-Trace ist eine Reihe von
Anweisungen, die zu einem Fehler führen, wenn sie ausgeführt werden. Die
Fähigkeit einen Fehler-Trace zu erstellen, wenn ein Fehler auftritt wird weithin
als einer der Hauptvorteile der Modellprüfung in Software Verifikation angese-
hen. Der Diagnosewert eines Fehler-Traces, bei der Lokalisierung von Fehlern
und anderen versteckten Problemen in dem Program, ist unbestreitbar. In der
Praxis können Fehler-Traces jedoch sehr schnell zu lang werden und die men-
schliche Analysekapazität leicht übersteigen. Um irgendeinen Wert aus einem
Fehler-Trace zu extrahieren, benötigen wir automatische Analysetechniken.

Diese Thesis stellt eine solche Technik, die auf der Identifizierung von An-
weisungen basiert, die die Protokollierung ganz alleine unausführbar machen,
vor. Wir bezeichnen solche Anweisungen als aberrant. Aberrante Aussagen
ermöglichen uns Fehler-Traces von einer neuen und praktischen Perspektive zu
betrachten. In dieser Thesis zeigen wir, dass Fehlerlokalisierung eine der An-
wendungen von Aberrance ist. Die präzise Definition von Aberrance erlaubt uns
nicht nur die Fehlerlokalisierung in einem Fehler-Trace, sondern gibt uns auch
einen Hinweis diesen Fehler zu beheben. Eine weitere Anwendung von aberran-
ten Anweisungen besteht in der Erkennung von nicht validierten Eingaben in
einem Programm, welche als typische Sicherheitslücke betrachtet werden. Wir
verwenden auch aberrante Anweisungen um Fehlerwarnungen zu unterdrücken
und später einzuordnen. Eine große Anzahl von Fehlerwarnungen, die von statis-
chen Verifikationswerkzeugen erzeugt werden, stellen für den durchschnittlichen
Entwickler beim Debugging eine große Hürde dar. Wir diskutieren auch die
Verwendung von aberranten Anweisungen bei der Erhöhung der Ausgabege-
nauigkeit von Software Model Checkern.

Wir haben unseren Algorithmus, der aberrante Anweisungen berechnet, im
Analyse Framework Ultimate implementiert. Dieser ist öffentlich verfügbar.
Die Implementierung ermöglicht es uns die oben genannten Anwendungen auf
Fehler-Traces von realen Programmen zu testen.
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Chapter 1

Introduction

As we advance into a future where autonomous vehicles move us around, cryp-
tocurrencies gain an increasing amount of relevance in our financial system and
we vote our representatives electronically, the importance of correct, robust,
and secure software is becoming increasingly vital for the smooth functioning
of our society. A report published last year by the insurance company Lloyd’s
claims that a single major global cyber attack can incur a loss of as much as $50
billion1, a figure on par with a catastrophic natural disaster. In 2016, cyber-
crime cost the global economy over $450 billion, over 2 billion personal records
were stolen and in the U.S. alone, over 100 million Americans had their medical
records stolen2. And yet, developing robust and secure software still remains a
challenge in 2018.

Just as in the past, today a developer’s basic workflow consists of writing,
testing and debugging program code. All of these steps have been greatly im-
proved by (semi- or fully) automatic tools and algorithms developed by the
research community. And yet, debugging software still takes a long time in
this process, a major amount of which is usually dedicated to localizing faulty
statements, i.e., the cause of the error.

Software model checkers are powerful tools for the verification of computer
programs [1]. They function by exhaustively exploring the reachable state space
of the model of a program. When a violation is detected, the typical way to
communicate with the user is the output of an error trace – a sequence of
statements through the program that, when executed, leads to an error. The
diagnostic value of an error trace in understanding the cause of the error is
undeniable. The usefulness of an error trace is directly proportional to our
ability to effectively analyze the information present in it. However, in practice,
an error trace can contain hundreds of statements and can easily become very
tedious and time-consuming to analyze manually. This can happen for instance
if the program is just too large or if the program has a deep bug, i.e., a bug
that only manifests itself after a lot of loop unwindings. The need for automatic
trace analysis techniques is, therefore, quiet obvious and a topic of research for

1
https://www.cnbc.com/2017/07/17/global-cyberattack-could-spur-53-billion-in-losses-lloyds-of-london.html

2
https://www.cnbc.com/2017/02/07/cybercrime-costs-the-global-economy-450-billion-ceo.html
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many years now [2–6].
In this work, we consider statements that can single-handedly make a trace

infeasible. We believe that such statements can provide us with an ability to
analyze the trace from a different and quite useful perspective. We call such
statements aberrant. A statement in a trace is aberrant if (a) it assigns a value
to a variable x and (b) there exists a different value that, when assigned to x
at this position instead, makes the trace infeasible. In Section 3 we formally
define an aberrant statement in a trace and present an algorithm that statically
computes the position of all aberrant statements.

To demonstrate how aberrant trace elements can be used to analyze an error
trace, we present four applications in Section 4. The first application is in fault
localization, where we discuss how aberrant statements can locate potentially
faulty statements in an error trace. Given the precise definition of aberrance,
the knowledge of which statements in the error trace are aberrant not only helps
the programmer in locating the position where the bug might reside, but also
suggests what can be done to fix it. Of course, localizing the fault in a program
with a single error trace does have some limitations which become apparent
when the trace passes through a branch (then part of an if-then-else branch).
We also discuss how can we deal with such cases to improve the precision.

In the second application, we use aberrant statements to identify one of the
subclasses of software security vulnerabilities known as unvalidated inputs. This
security vulnerability exists when not all possible input values are checked to
make sure if they are valid. Any input received by a program from an untrusted
source (e.g., another user or a network) is a weak link when it comes to the
security of the software. Hackers try to look for every source of input to the
program and exploit it by passing input values that might cause the program
to misbehave. Unvalidated-input exploits have been known to cause serious
damage in real world software including data theft and corruption of hard disks.
We present an example where an unvalidated input triggers a buffer overflow and
show how we can use aberrant statements to detect the presence of unvalidated
inputs in a program. We apply our approach on 3 real world examples from the
Linux device drivers. These examples had unvalidated inputs which introduced
vulnerabilities like an unavoidable doublelock in the Unix File System (UFS)
and Aeroflex Gaisler device driver. Since the vulnerability could be exploited
by an external input value, it was classified as a security vulnerability and was
immediately fixed when found. We apply our algorithm on simplified programs,
which model the problem with the unnecessary code removed. Given an error
trace for the simplified programs, using our technique, we were able to confirm
the existence of an unvalidated input in all the three programs.

Next, we discuss the application of aberrant statements to suppress uninter-
esting warnings in the context of open programs with an unconstrained envi-
ronment. Open programs expose a set of external libraries or API methods. In
the absence of precise environment specifications, static program verifiers tend
to be conservative (over-approximate) and therefore generate a large number of
warnings, all of which might not be useful to the programmer from a debug-
ging perspective. These large number of warnings still hamper the adoption of
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static verifiers for program debugging by an average software developer. We
also present a statistical technique based on the number of aberrant statements
in error traces to rank error warnings.

The fourth application considers error traces that have been overapproxi-
mated during the analysis by a software model checker. Accordingly, the fea-
sibility status is unknown. If, however, all the overapproximated statements in
the error trace are aberrant, we can conclude that the original trace is indeed
feasible.

1.1 Contributions

In this thesis, we present an efficient technique to analyze an error trace and
present it’s application in fault localization, software security, verification of
open programs and in increasing the precision of software model checkers. We
also extend our basic approach to deal with programs with branches. Our tech-
nique does not require additional successful or failing executions other then the
given error trace. Secondly, it does not use expensive model checking or con-
straint solving algorithms. We have implemented our algorithm in Ultimate
Automizer, which is publicly available. To demonstrate the effectiveness of
using our approach in fault localization and the detection of unvalidated input,
we test our implementation on real world examples.

1.2 Outline

In Chapter 3, we formally define aberrant trace elements and present an al-
gorithm to find all such trace elements in a trace. In Chapter 4, present four
applications where aberrance can be used in practice. In Section 4.1, we show
how aberrant trace elements can be used in fault localization. In Section 4.2, we
use aberrance to detect the presence of unvalidated inputs in a program. In Sec-
tion 4.3 , we present a technique to suppress and later rank uninteresting error
warnings. In Section 4.4, we discuss how can aberrant trace elements be used
to increase the precision of software model checkers. In Chapter 5, we discuss
how our open source implementation can be used in Ultimate Automizer for
programs written in C and Boogie.

1.3 Foundational Work For This Thesis

The work I did during my masters project forms the basis for this thesis. During
my masters project, I along with my supervisors worked on finding statements in
an error trace that “played a role in the error”. Back then, we named them rel-
evant statements and focused exclusively on fault localization. We also worked
on the basic implementation in Ultimate Automizer. During the thesis we
re-characterized the notion of relevance to aberrance and worked on extensions
like e.g., dealing with error traces with branches and applications in security

5



and verification of open programs. The implementation, of course, was also
heavily extended and tested thoroughly. We also evaluated our techniques on
real world benchmarks to demonstrate their applicability.
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Chapter 2

Preliminaries

Program. We follow the notation described in [7] and [1] and represent pro-
grams by their control flow graph (CFG) over a set of variables V . A CFG
provides us with a simple abstraction for programs, allowing us not to worry
about the syntax and semantics of programming languages. A node in a CFG
corresponds to a program location and each edge is labeled with a statement.
The statements are taken from a finite set Σ called the alphabet. Formally, a
CFG is a graph P = (Loc, δ, linit, lerr) where

• Loc is a set of finite nodes (locations),

• δ ⊆ Loc× Σ× Loc is the transition relation,

• linit is the initial location,

• lerr is the accepting node called the error location.

We sometimes consider another dead-end location called lexit to mark regular
exit of the program. Figure 2.1 shows a program with it’s CFG.
Program state. We employ a standard state based view of programs. Let V
be a fixed set of program variables. A program state is a valuation of program
variables in V from their respective domains. When we talk about a sequence
of states, a variable x ∈ V is denoted as x′ in the subsequent state. We express
(sets of) program states by predicates over program variables, and statements
by formulas over primed and unprimed variables. For example, the formula
p > 10 represents the set of states where the program variable p has a value
strictly greater then 10. Given a predicate ϕ over (unprimed) variables from V ,
we write ϕ[V ′/V ] (or ϕ′ for short) for the predicate obtained by replacing all the
occurrences of a variable x ∈ V by x′. We sometimes switch between a symbolic
and a set interpretation of states. For instance, when we write s ∈ ϕ ⊆ ψ for
some states s and predicates ϕ, ψ, we mean s � ϕ and ϕ � ψ if interpreted in
the symbolic view.
Statements. To describe program statements in control flow graphs, we use
guarded commands [8]: the deterministic assignment x := e for some variable
x and an expression e, the nondeterministic assignment havoc x for a variable

7



assume p != 0;

while(n >= 0)

{

assert p != 0;

if(n == 0)

{

p := 0;

}

n--;

}

(a) Program code

linit

l1

l2

l3

lerr

l4

l5

p != 0

n >= 0

p == 0

n < 0

n--

n != 0

n == 0

p := 0

(b) Control Flow Graph

Figure 2.1: A program with it’s Control Flow Graph (CFG). Example taken
from [1]

x, and the assume statement assume(ϕ) for some predicate ϕ. It may come
from statements like if(ϕ)-then-else or assert(ϕ). In this dissertation, we
mostly just write ϕ for assume(ϕ) (for example, y != 10 for the statement

assume(y != 10) ).
Predicate transformers. We recall the well-known predicate transformers
WP (weakest precondition), PRE (precondition) and SP (strongest postcondi-
tion). Let ϕ, ψ be predicates and st be a statement.

WP (ψ, st) ≡ ∀V ′. st⇒ ψ[V ′/V ]

PRE(ψ, st) ≡ ¬WP (¬ψ, st) ≡ ∃V ′. st ∧ ψ[V ′/V ]

SP (ϕ, st) ≡ ∃V ′′. ϕ[V ′′/V ] ∧ st[V ′′/V ][V/V ′]

We assume the reader is familiar with the notion of a Hoare triple, which
we write {ϕ} st {ψ} for precondition ϕ, statement st and postcondition ψ. A
Hoare triple {ϕ} st {ψ} is valid if and only if the precondition ϕ implies the
weakest precondition WP(ψ, st).
Trace. A trace π is a sequence of statements. Let π = 〈st1, . . . , stn〉 be a trace
of length n. For 1 ≤ i ≤ n we use sti to represent the i-th statement and for
1 ≤ i < j ≤ n, we use π[i, j] to represent the sub-trace from position i to j. We
also use π[j, n] to represent the suffix trace starting at position j and π[1, i] to
represent the prefix trace till the position i.

8



The predicate transformer functions WP(), PRE() and SP() can easily be
lifted to traces by applying them recursively, where the application to the empty
trace 〈〉 is the identity, e.g., WP(ψ, 〈〉) = ψ.
Execution. An execution ξ of a trace π = 〈st1, . . . , stn〉 of length n is a se-
quence of states s0, s1, . . . , sn such that the formula SP(si−1, sti) is satisfiable
for all 1 6 i 6 n.
Infeasibility of a trace. A trace π = 〈st1, ..., stn〉 is called infeasible if there
is no possible execution of π. Otherwise, the trace is called feasible.
Error Trace. An error trace is a trace from linit to lerr. Note that an error
trace is not necessarily feasible.
Reachability. Given a trace π = 〈st1, . . . , stn〉, a state s is reachable at posi-
tion i if there exists an execution s0, . . . , si of the prefix trace π[1, i] such that
si = s. Similarly, a state s is coreachable at position i if there exists an execution
si, . . . , sn of the suffix trace π[i + 1, n] such that si = s. A state is bireachable
at position i if it is both reachable and coreachable at that position. Note that
every state is reachable at position 0 and coreachable at position n. For a trace
π and predicates ϕ, ψ, we may restrict the executions of π to those starting in
ϕ (the precondition) and ending in ψ (the postcondition), i.e., ξ is of the form
s0, . . . , sn such that s0 � ϕ and sn � ψ.

9



Chapter 3

Aberrant Trace Elements

In this chapter, we establish the technical basis for aberrance in program traces,
which will allow us to build upon the concept further and use it in analyzing
feasible error traces. The word aberrance stems from the Latin word aberrare,
which means “to deviate”. In English, aberrant means “a person, thing or a
group that departs or deviate from the normal or usual course”. We can think
of an entity as aberrant if it causes deviation from normality.

Given a feasible trace, we call a trace element aberrant if a modification in
that trace element can single-handedly make the whole trace infeasible. In other
words, aberrant trace elements can deviate a feasible trace towards infeasibility.
In the next sections, we will formalize the notion of aberrance and present an
algorithm to find all such trace elements in a trace. Since a trace element is a
statement, from here onwards, we will use the term aberrant statements instead
of aberrant trace elements.

3.1 Aberrance

In the sense of playing a role in the feasibility of a trace, not all statements are
created equal. Some assignment statements in the trace can be omitted or the
value being assigned can be modified, without having any effect on the feasibility
of the trace. This does not, however, necessarily mean that such statements are
useless when analyzing a trace. Their effect might manifest only after modifying
another statement.

We focus on those (possibly non-deterministic) assignment statements that
can make the trace infeasible when the assigned value changes. Therefore, in the
context of the feasibility of the trace, such statements are the most consequential
assignments in the trace. Note that we do not consider conditional (i.e., assume)
statements here. This is because every conditional can be changed to make the
trace infeasible by modifying it to assume(false) .

We restrict ourselves to certain resonable modifications only. The variable
that the value is being assigned to must remain the same and the new value
must be a constant. That means that a deterministic assignment x := e and

10



1: x := 10;

2: y := 0;

3: if(y < 10){

4: x := 1;

5: }

6: assert(x >= 10);

(a) Program code

l0l1l2

l3

l4

l5

lerr

x := 10y := 0

x < 10

x >= 10

y >= 10

y < 10

x := 1

(b) Control Flow Graph

x := 10 y := 0 y < 10 x := 1 x < 10

(c) A feasible error trace

Figure 3.1: Simple program with a feasible error trace illustrating Aberrance

a non-deterministic assignment havoc x must be replaced by x := c for some
constant c.

Observe that an assignment statement st of the form x := e is not aberrant
only if the trace is feasible for any non-deterministic assignment to x at this
point (i.e., we could just replace st with havoc x ).

For the rest of this document, we use the term assigning statement to uni-
formly talk about deterministic and non-deterministic assignments. Before we
give a formal definition for aberrant assigning statement, we define blocked ex-
ecution.

Definition 1 (Blocked Execution). Let 〈st1, ..., stn〉 be a trace of length n. We
call an execution s0, ..., sj−1 of a sub trace 〈st1, ..., stj〉 a blocked execution if
SP (sj−1, stj) is unsatisfiable where 1 ≤ j ≤ n.

An assume statement assume(ϕ) for some predicate ϕ at location i can
block the execution if ϕ does not hold in the state si−1. Consider the following
trace.

x := 0 y := 0 assume(y < 0) x := 10 assume(x != 10)

The execution true, x = 0, x = 0 ∧ y = 0 of the sub trace 〈 x := 0 , y := 0 ,

assume(y < 0) 〉 is a blocked execution. This is because SP(x = 0 ∧ y = 0,

assume(y < 0) ) is not satisfiable. In fact, all executions of the above trace are
blocked and the trace is infeasible.
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1: x := 10;

2: havoc x;

3: if(x < 10){

4: y := 1;

5: }

6: assert(x >= 9);

(a) Program code

x := 10 havoc x x < 10 y := 1 x < 9

(b) A feasible error trace

Figure 3.2: A program with non-deterministic assignment

We are now in a position to formally capture the definition of an aberrant
assigning statement.

Definition 2 (Aberrant Statement). Let π be a feasible trace of length n with
sti being an assigning statement at position i, that assigns a new value to
some variable x. sti is an aberrant statement in π if there exists an execu-
tion s0, . . . , sn of π and some value v, such that every execution of the suffix
trace 〈x := v, π[i+ 1, n]〉 starting in the state si−1 is blocked.

Let us make the intuition of aberrance more clear with the help of two
examples. The example in Figure 3.1 shows a simple program with it’s control
flow graph. The only feasible error trace is shown in Figure 3.1c. The error trace
contains two aberrant statements highlighted in red. The statement x := 1 is
aberrant because a modification of the right hand side of the assignment which
in this case is a constant 1 to a constant 2 will violate the condition x < 10

in the assume statement x < 10 . As a result of this modification, no possible
execution exits for this trace, rendering it infeasible. The statement y := 0 is
aberrant with a similar argument.

Consider another program in Figure 3.2 with a deterministic and a non-
deterministic assignment to the variable x. The statement x := 10 is not aber-
rant because no modification of the value 10 exists at this point, which makes
the trace are infeasible. This is because the next statement, havoc x , can al-
ways assign a value to x such that the condition x < 10 is never violated in the
statement x < 10 . The statement havoc x will be aberrant because a value v
exists (e.g. 10) such that if we assign 10 to x at this point, the trace becomes
infeasible.

3.2 Finding Aberrant Statements

Now that we formally know what an aberrant statement is, we can turn to the
question of how can we find such statements. Before we present an algorithm
to find all aberrant statements in a feasible error trace, we rephrase the char-
acterization of a (co/bi) reachable state in terms of PRE() and SP() operators.
Assume we have a statement st, a precondition ϕ and a postcondition ψ. The
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ϕ st R

SP (ϕ, st)

(a) Computing set of reachable states
R from st and ϕ

C st ψ

PRE(ψ, st)

(b) Computing set of co-reachable states C
from st and ψ

ϕ st1 B st2 ψ

SP (ϕ, st1) PRE(ψ, st2)

(c) Computing set of bi-reachable states B, where B = R ∩ C

Figure 3.3: Computation of reachable, co-reachable and bi-reachable states.

set of reachable states R can be computed as R = SP(ϕ, st). The set of co-
reachable states C can be computed with the help of the PRE() operator as
C = PRE(ψ, st). C represents a set of states such that for all states in C,
there exists atleast one execution of st that satisfies ψ. For two consecutive
statements st1, st2 in an error trace with pre-condition ϕ and post-condition
ψ, the set of bi-reachable states between st1 and st2 can be computed as SP(ϕ,
st1) ∩ PRE(ψ, st2).

In a trace π = 〈st1, . . . , sti, . . . , stn〉, a precondition ϕ and a postcondition
ψ. A state s is reachable at position i if s ∈ SP(ϕ, π[1, i − 1]). A state s is
co-reachable at position i if s ∈ PRE(ψ, π[i, n]). A state s is bireachable at
position i if s ∈ SP(ϕ, π[1, i− 1]) ∩ PRE(ψ, π[i, n]).

3.2.1 Algorithm

Let π be a feasible trace of length n. In the first step of the algorithm, we com-
pute the co-reachable and bi-reachable states along the trace. The co-reachable
states Ci can be iteratively computed as follows:

Ci :=

{
true i = n

PRE(Ci+1, π[i+ 1]) i < n

Analogously, we can compute the reachable states Ri as follows:
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Ri :=

{
true i = 0

SP(Ri−1, π[i]) i > 0

Finally, the bi-reachable states are simply obtained from the intersection,
Bi := Ri ∩ Ci. We note that in the setting where we get the error trace from
a software model checker, the (co-)reachable states might already be available
for free if the analysis was based on WP/SP [9].

st1 st2 st3

C3C2C1C0

B0 B1 B2 B3

R0 R1 R2 R3

PRE(C3, st3)

SP (R1, st1)

∩

Figure 3.4: The trace is highlighted in grey. The co-reachable states Ci and reachable
states Ri are computed iteratively. The set of bireachable states Bi are obtained by
the intersection of Ci and Ri. A Hoare triple is marked in red.

Given the sequences Ci and Bi, for any assigning statement π[j] with as-
signed variable x, we construct the following Hoare triple.

{Bj−1} havoc(x) {Cj}

The statement will be aberrant if and only if the Hoare triple is not valid.
Hoare triple validity can be checked by a theory solver for many theories that
are used in practice [10]. We summarize the procedure in Algorithm 1. Note
that the check for aberrance is independent for each statement, i.e, the loop in
Algorithm 1 can be parallelized.

3.2.2 Algorithm Correctness

We now show that Algorithm 1 computes aberrant statements according to our
formal definition of aberrance.

Theorem 1. Let π be a feasible trace of length n with π[i] being an assigning
statement at position i that assigns a value to some variable x. Let ϕ be the
set of bireachable states at position i and ψ be the coreachable states at position
i+ 1. Then π[i] is an aberrant statement iff

{ϕ} havoc(x) {ψ} is invalid.
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Algorithm 1: Aberrant statement positions in a trace.

Input: π[i] for 1 ≤ i ≤ n: sequence of statements
Ci for 0 ≤ i ≤ n: sequence of co-reachable states
Bi for 0 ≤ i ≤ n: sequence of bi-reachable states
Output: res: list of aberrant statement positions

1 res ← [];
2 for j = 1 to n do
3 if π[j] is not an assigning statement then continue;
4 Let x be the assigned variable in π[j];
5 if {Bj−1} havoc(x) {Cj} is invalid then res.append(j);

6 end

Proof. Let D be the domain of the variable x.

π[i] is aberrant.

⇐⇒ ∃s ∈ ϕ. ∃v ∈ D. all the executions of 〈x := v;π[i+ 1, n]〉 starting in the
state s are blocking

(∗)⇐⇒ ∃s ∈ ϕ. ∃v ∈ D. SP(s, x := v) 6∈ ψ
(∗)⇐⇒ ∃s ∈ ϕ. s 6∈ WP(ψ, havoc(x))

⇐⇒ ϕ 6⊆ WP(ψ, havoc(x))

⇐⇒ {ϕ} havoc(x) {ψ} is invalid

ϕ π[i]
ψ

ss
havoc(x)

x := v

Figure 3.5: Additional explanation for the proof of Theorem 1.

We only explain the non-trivial steps marked with (∗). First note that, since
s ∈ ϕ, there is at least one assignment to x that leads to ψ. The aberrance of
π[i] implies that there exists a value v such that the assignment of v to x will
lead us to a state in ¬ψ (all executions the of the suffix trace are blocking if we
start the execution from a state in ¬ψ). Hence SP(s, x := v)6∈ ψ

Moreover, since from state s there is an assignment to x that leads outside
of ψ, this successor can also be reached by a nondeterministic assignment x,
i.e., not all successors of s under havoc(x) are in ψ. On the other hand, every
successor of s under havoc(x) can be reached by an assignment to x. We
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graphically illustrate the situation in Figure 3.5.

3.2.3 Example

x := 1 y := 1 x != 1

truex! = 1x! = 1false

false false false false

true x = 1 x = 1 ∧ y = 1 false

PRE(true, x! = 1)

SP (x = 1, y = 1)

∩

Figure 3.6: For the error trace highlighted in grey, the first statement is aberrant
since the hoare triple {false} x:= 1 {x! = 1} is invalid.

3.2.4 Discussion

Co-reachable States

To understand why the last co-reachable state Cn is true, we have to ask what
does the co-reachable states represent in our algorithm. Let π[i] be an assigning
statement of the form x := e at position i in a trace π of length n. Computation
of aberrance of the assigning statement π[i] is checking the validity of the hoare
triple {Bi−1} havoc(x) {Ci}. In simple words, this check allows us to conclude
if there is an assignment to x, which leads to a state not in Ci or ¬Ci. We want
¬Ci to be a set of states from which all executions of the trace π[i + 1, n] are
blocking (π[i + 1, n] is infeasible). Hence, ¬Ci = WP(false, π[i + 1, n]) and
Ci = ¬WP(false, π[i+ 1, n]) = PRE(true, π[i+ 1, n]).

Bi-reachable States

For a statement π[i], the precondition Bi−1 in the hoare triple is the intersection
between the set of reachable states Ri−1 and the set of co-reachable states Ci−1.
The reason for using the bi-reachable states will become apparent with the help
of the example in figure 3.7.
According to the definition of aberrance, y := 7 should not be aberrant, as no
assignment to y exists at this point such that the trace is infeasible. Let us dig a
bit deeper and see what does Algorithm 1 compute . The hoare triple check for
this statement would be {x = 5} havoc(y) {x = 5∨ y = 7}. This obviously is a
valid hoare triple and the statement y := 7 will not be marked aberrant by our
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x := 5;

y := 7;

assert (x != 5 && y != 7)

(a) Program code

x := 5 y := 7 x == 5 || y == 7

(b) A feasible error trace

Figure 3.7: No statement in the trace is aberrant

algorithm. If instead of bi-reachable states, we used co-reachable states as the
precondition, the hoare triple check would be {true} havoc(y) {x = 5∨ y = 7}
which is invalid and consequently y := 7 would be marked as aberrant.

Syntactic Algorithm

One might argue that Algorithm 1 is too complex for our purpose and the
same result can be achieved with a much simpler algorithm based only on WP
computations along the trace. In the proposed algorithm, for a trace π =
〈st1, ..., stn〉, a WP sequence wp0, ..., wpn is computed along the trace where
wpn = false and wpi = WP (false, π[i + 1, n]) for 0 ≤ i < n. An assigning
statement sti is aberrant if wpi contains the variable in sti.

The example in Figure 3.7 demonstrates why such an algorithm is not suit-
able for our notion of aberrance. The statement st2 = y := 7 will be marked

aberrant since wp2 is x! = 5 ∧ y! = 7. The statement y := 7 is not aberrant
according to our notion since no assignment to y exist at this point which makes
the trace infeasible.
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Chapter 4

Applications

In this chapter, we present four applications of aberrance analysis that can be
helpful in practice. In the first application, given a feasible error trace, we point
out statements that are potentially faulty and are therefore candidates for a sim-
ple modification which fixes the bug. Our approach for fault localization using
aberrance on a feasible error trace not only points out which statements in an
error trace might be causing the error but also how the error can be fixed. In the
second application, we extend this idea to identify the presence of unvalidated
inputs in a program which is classified as a typical security vulnerability. The
third application is in the verification of programs that expose external libraries
and APIs. Here, we use aberrance to suppress and later rank error warnings
based on how useful they might be for the user from a debugging point of view.
In the fourth application we show how we can use aberrance to help a software
model checker that over-approximates statements to give a definite answer.

4.1 Finding Faulty Statements In An Error Trace

We consider the setting where we are given a single feasible error trace π, e.g.,
from a software model checker. Assuming that the error specification is correct,
we can conclude that at least one of the statements in the trace must be faulty.
Our working assumption, for now, is that there is only a single fault in the trace.
Given a long feasible error trace, usually not all statements are actually related
to the fault. Here we consider the task of identifying possibly faulty statements,
which is also known as fault localization. Observe that fixing the fault will make
the error trace π infeasible. If we assume that the fault manifests in a single
statement sti, a fix will correspond to a modification of sti.

4.1.1 Assignment Statements

Given a feasible error trace π, if sti is an assigning statement and the prefix trace
π[1, i−1] is deterministic, then there exists a modification for the statement sti
that can make π infeasible if and only if sti is aberrant.
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Thus we can classify assigning statements sti as follows. Assume sti is
aberrant. In this case a modification of the assigned value will make the trace
infeasible. Then we know both where and how we could fix the error trace. Now
assume sti is not aberrant. In that case, a modification of the assigned value
alone will not make the trace infeasible. Then we know that this statement is
either not related to the fault or fixing the fault requires changing at least one
more statement.

According to Ockham’s razor, when in doubt, one should choose the ap-
proach with the simplest assumptions. In our setting, a reasonable strategy
could hence be to first look at all assignments that are aberrant, because those
are precisely the statements that would only involve a single modification. Only
if no fault could be found one should consider the more complicated setting of
multi-statement modifications.

Consider the following program.

1: int *p1, *p2, i;

2: p1 := 0;

3: p2 := 0;

4: i := 1; // bug: should be 0

5: while (i < 10) {

6: if (i == 0) {

7: p1 := malloc(sizeof(int));

8: p2 := malloc(sizeof(int));

9: }

10: assert p1 != 0 && p2 != 0;

11: i := i + 1;

12: }

The program initializes two pointers to null and enters a loop. The first loop
iteration is supposed to allocate memory and assign it to the pointers, but the
programmer accidentally initialized the loop counter i to 1 instead of 0, and
hence this step is skipped. The safety specification is given by the assert

statement which expresses that the pointers should not point to null at the
end of the loop body.
The (unique) feasible error trace is given as follows.

p1 := 0 p2 := 0 i := 1 i < 10 i != 0 p1 == 0 || p2 == 0

First observe that the trace corresponds to a single execution (i.e., there is no
nondeterminism involved; every variable is initialized). If we apply the defini-
tion, then the assignment to p1 is aberrant only if we can find another assign-
ment to p1 that makes this trace infeasible. However, this is not the case here
because p2 would still be initialized to 0 and thus the error condition at the
end would still be satisfied. The assignment to p2 is also not aberrant with
an analogous argument. We can, however, find an assignment to i that makes
the trace infeasible. One choice would be the value 0, which corresponds to the
actual fix of the bug. Another choice would be the value 10.
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1: x := 10;

2: y := 10;

3: if(y <= 10) {

4: x := 1;

5: }

6: assert x >= 10;

Figure 4.1: Two simple fixes can avoid the assertion failure in this program

Other bug fixes that one can imagine are to initialize the two pointers out-
side the loop or replacing the if condition with i==1. We could even try to
restructure the control flow of the program. However, we would then open Pan-
dora’s box and enter the field of program synthesis, which we strictly want to
avoid. We rather settle for the simple bug fix as suggested by our definition
of aberrant statements. If we cannot find such a simple bug fix, the only help
we can give to the developer is that no simple bug fix exists (according to our
definition), which itself might be a valuable information, e.g., when estimating
debugging time or prioritizing jobs. In such cases one may also fall back to
other fault localization techniques (if they are applicable).

Consider another program in Figure 4.1. Variables x and y are initialized
to 10. The assertion failure is due to the assignment of 1 to the variable x in
line 4. The assertion failure in the program can be avoided by modifying the
assignment at line 4. Another way to fix the program would be to modify the
initialization value to the variable y at line 2. If y is assigned a value greater
then 10, the statements inside the then branch would not be executed and x

would not be assigned the value 1 which would avoid the assertion violation.
The feasible error trace is given as follows (aberrant statements are marked in
red):

x := 10 y := 10 y <= 10 x := 1 x < 10

Consider another program in Figure 4.2 where the assignment of 11 to the
variable loc at line 3 can cause a buffer overflow in line 6. In our setting,
loc := get value() where get value() takes a value from the user is over-
approximated and modeled as havoc loc . The assignment to loc is the only
statement that can cause the assertion to fail in the end. The error trace is
given as:

havoc loc val := 10 loc < 0 || loc >= 10

Most fault localization techniques employ lots of different program execu-
tions for their analysis. The reason is that the information gained from a single
error trace is limited. Even though the bug must be present on the error trace,
fixing a trace is much simpler than fixing a program. Clearly, not every fix that
makes a single error trace infeasible also fixes the bug in the program.

To summarize, aberrant statements have the following properties.
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1: int a[10];

2: int loc, val;

3: loc := get_value(); // get value from user

4: val := 10;

5: assert(loc >= 0 && loc<10)

6: a[loc] := val;

Figure 4.2: Simple example of a buffer overflow

1. The aberrant statements are statically computable from a single error trace
without the need for additional context like, e.g., sampling of executions
along that trace.

2. The mere fact that a statement is declared aberrant indicates both where
and how the bug could be fixed.

3. Conversely, the fact that a statement is declared not aberrant indicates
where and how the bug cannot be fixed.

4.1.2 Error Traces With Branches

Analyzing a single feasible error trace to localize faults in a program has inherent
limitations which become apparent when the error trace passes through a branch,
say, the then part of an if-then-else conditional. This shortcoming is due to
the nature of how error traces are encoded. To understand this, recall that an
error trace is simply a path from the start state to the error state in a control flow
graph of the program. An error trace, therefore, does not take into account the
control flow of the program and lose all the information for the other branches
in the CFG. The application of aberrance to find faulty statements, hence, will
not give accurate results for error traces passing through a branch. That would
mean that an assignment statement might be aberrant in an error trace, but
modifying that assignment in the program will have no effect in fixing the error.
Consider the program shown in Figure 4.3. A feasible error trace that visits the
then branch is:

x := 0 havoc y y < 0 y := 0 x == 0

In this trace, the assignment to y in line 2 is aberrant but modifying this assign-
ment in the program will have no effect in fixing the error, as the assertion in the
end will still be violated. The assignment to y is aberrant due to the conditional
statement y < 0 , which can block the execution of the trace. Modification of
statements that are aberrant due to the conditional statements of branches may
not always act as potential bug fixes like we described in Section 4.1. Consider
the modified program in Figure 4.4 and the corresponding feasible error trace
in Figure 4.4b

In this program, the faulty assignment statement lies in the then branch at
line 4. In the feasible error trace, the assignment to y at line 2 is again aberrant,
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1: int x := 0;

2: int y := get_y();

3: if (y < 0) {

4: y := 0;

5: } else {

6: y := 1;

7: }

8: assert x != 0;

linitl1l2

l3l4

l5

lexit

lerr

x := 0havoc y

¬(y < 0)

y := 1

¬(x == 0)

y < 0

y := 0 x == 0

Figure 4.3: The assertion is violated no matter which branch of the conditional
is taken.

but a modification to y can force the program execution to take the else branch
which will in fact avoid the assertion failure in the end. Another option is also
to fix the faulty assignment x := 0 in the then branch, which is also computed
to be aberrant by our algorithm.

1: int x := 1;

2: int y = get_y();

3: if (y < 0) {

4: x := 0;

5: } else {

6: y := 1;

7: }

8: assert x != 0;

(a) Program code

x := 1 havoc y y < 0 x := 0 x == 0

(b) A feasible error trace

Figure 4.4: The assertion is violated only if the then block is taken.

From the two examples discussed above, it is clear that using aberrance,
our ability to accurately find simple potential bug fixes is hindered for error
traces that pass through branches. To overcome this limitation, two possible
solutions come to mind. (a) Analyze multiple feasible error traces independent
of each other and consider only those statements as potential bug fixes if they
are aberrant in all the considered feasible error traces. (b) Modify the encoding
of error traces to include branch information. The program in Figure 4.3 has
two feasible error traces, but the statement havoc y is aberrant in both of them.
Analyzing multiple feasible error traces, therefore, will not help us in this case.
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linit l1 l2 lerr
st1 st2 st4

st3

(a) Two paths from l1 to l2

linit l1 l2 l3 lerr

l4 l5

st1 st3 st7 st8

st2

st4

st5
st6

(b) Three paths from l1 to l3

linit l1 l2 l3 l4 lerr
st1 st4 st5 st6 st7

st2

st3

(c) Three paths from l1 to l4

linit l1 l2 l3 l4 lerr
st1 st2 st4 st6 st7

st3

st5

(d) Three paths from l1 to l4

Figure 4.5: Possible branching structures in a CFG

We will, therefore, explore the second option, i.e., modifying the encoding of
the error trace in a such a way, that the branching information from the control
flow graph of the program is taken into account.

Branch

Before we explain how we can encode the branching information from the CFG
into an error trace, we formally describe a branch in an error trace.

Given a feasible error trace π = 〈st1, ..., stn〉, let ρ = 〈linit, ..., lerr〉 be the
sequence of locations along the error trace in the control flow graph starting from
the initial location linit to the error location lerr. A location li ∈ ρ is called a
must-visit location if every path from linit to lerr passes through this location
in the control flow graph. Let ρmust be the sequence of must-visit locations in
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1: int x := 0;

2: int y := get_y();

3: if (y < 0) {

4: y := 0;

5: } else {

6: y := 1;

7: }

8: assert x != 0;

(a) Simple prgram with an if
then else

linitl1l2

l3l4

l5

lexit

lerr

x := 0havoc y

¬(y < 0)

y := 1

¬(x == 0)

y < 0

y := 0 x == 0

(b) Control Flow Graph

x := 0 havoc(y) y < 0 && y’ := 0 || y >= 0 && y’ := 1 x == 0

(c) Error trace with conglomerate

Figure 4.6: Program with it’s control flow graph. The conglomerate is shown
in orange.

ρ. Let πlout,lin be the error sub-trace between the locations lout and lin.

Definition 3 (Branch). Given a feasible error trace π of length n, an error
sub-trace π[i, j] is called a branch if π[i, j] = πlout,lin such that lout = ρmust[s]
and lin = ρmust[s+ 1] and there are more then one paths between the locations
lout and lin in the CFG. lout is called a branch-out location and lin is called a
branch-in location.

Consider the examples of possible branching structures in Figure 4.5. The
error traces π are shown in red in the corresponding CFGs. In Figure 4.5a
π = 〈st1, st2, st4〉, ρmust = ρ = 〈linit, l1, l2, lerr〉, π[1] = st2 is a branch,
since πl1,l2 = st2 and l1 = ρmust[1] and l2 = ρmust[2] and there are more
then one paths between the location l1 and l2. In the example in Figure 4.5d,
π = 〈st1, st2, st4, st6, st7〉, ρ = 〈linit, l1, l2, l3, l4, lerr〉, ρmust = 〈linit, l1, l4, lerr〉.
π[1, 3] = 〈st2, st4, st6〉 is a branch, since πl1,l4 = 〈st2, st4, st6〉 and ρmust[1] = l1
and ρmust[2] = l4 and there are more then one paths between the locations l1
and l4.

Encoding Branch Information In The Trace

From the program in Figure 4.3, it is clear that using aberrance to locate sim-
ple potential bugs fixes in a feasible error trace would require considering both
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1: x := 10;

2: y := 0;

3: if(y < 10){

4: x := 1;

5: }

6: assert(x >= 10);

(a) Program code

x := 10 y := 0 y < 10 && x := 1 || ¬(y < 10) assume(x < 10)

(b) Branch replaced by it’s respective conglomerate

x := 10 y := 0 assume(y < 10) x := 1 assume(x < 10)

(c) Error trace with the then branch

Figure 4.7: The conglomerate is aberrant due to the presence of an aberrant
statement in the then branch

the then and the else branch of the if-then-else conditional. This example
brings to light an underlying limitation of fault localization with single error
traces for programs that contain conditionals that might come from program-
ming constructs like if-then-else, loops and goto statements. Such statements
introduce multiple outgoing edges for a single location in the control flow graph
of the program raising the possibility of multiple paths between two locations.
We encode the error trace in a way such that all of these multiple paths are
taken into account during the computation of aberrant statements. We do this
by replacing all the statements in a branch by single statement called a con-
glomerate.

Definition 4 (Conglomerate). Given a feasible error trace π of length n, let
π[i, j] be a branch such that 1 ≤ i ≤ j ≤ n. Let lout and lin be the corresponding
branch-out and branch-in locations in the CFG for the branch π[i, j]. Suppose
there are m number of paths between lout and lin other the π[i, j]. A conglomer-
ate is a disjunction between all the paths between lout and lin, including π[i, j].

In the case where an error trace passes through a then branch, the con-
glomerate would then be a disjunction of the then branch and the else branch.
Consider again the program in Figure 4.3 where the error trace π is highlighted
in red in the CFG. For the branch π[2, 3] = 〈 y < 0 , y = 0 〉, there is only one

other path ( 〈 ¬(y < 0) , y = 1 〉 ) in the CFG from the branch-out location
l2 to the branch-in location l5. The error trace where the branch is replaced by
a conglomerate is shown in Figure 4.6c where only the first statement x := 0

is now aberrant.
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1: y := 1;

2: havoc x;

3: if(x = 10){

4: x := 2;

5: } else {

6: y := 2;

7: }

8: assert(y != 1);

(a) Program code

y := 1 havoc x x == 10 && x’ := 2 || x != 10 && y’ := 2 y == 1

(b) Branch replaced by it’s respective conglomerate

y := 1 havoc x x == 10 x := 2 y == 1

(c) Error trace with the then branch

Figure 4.8: The conglomerate is aberrant because of an aberrant statement in
the else branch

Aberrant Conglomerates

We cannot simply replace all the branches by their respective conglomerates
because we also want to be able to find a bug fix inside a branch. This is where
aberrant conglomerates come into play.

Let us consider the program in Figure 4.7a with an if-then-else statement
where the else branch is empty. The feasible error trace where the branch is
replaced by it’s respective conglomerate is shown in Figure 4.7b, where the
conglomerate is aberrant. This is due to the presence of an aberrant statement
x := 1 in the then branch. For an aberrant conglomerate, we therefore run
the aberrance analysis again on the feasible error trace, where the branch is not
encoded as a conglomerate.

An important point to note here is that an aberrant conglomerate does
not necessarily mean that there is a simple bug fix (or an aberrant statement)
in the corresponding branch. Consider the example in Figure 4.8, where the
conglomerate is aberrant but there is no aberrant statement in the then branch.
The conglomerate is aberrant due to a feasible else branch and the presence of
an aberrant statement in the else branch. In fact, an aberrant conglomerate
does not even guarantee that there is a single aberrant statement in either the
then branch or the else branch. This is for the cases where two statements are
aberrant only if they are considered together. Consider error trace in Figure
4.9b. The statements x := 1 and y := 1 are not aberrant. But consider the
following trace in Figure 4.9c, where the then branch and the else branch is
encoded as a conglomerate. The conglomerate is aberrant.
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1: a := 1;

2: if(a==1) {

3: x := 1;

4: y := 1;

5: }

6: assert(x != 1 && y != 1);

(a) Program code

a := 1 a == 1 x := 1 y := 1 x == 1 || y == 1

(b) Error trace with the then branch

a := 1 a == 1 && x := 1 && y:=1 || a != 1 x == 1 || y == 1

(c) Error trace with the branch replaced by a conglomerate

Figure 4.9: The conglomerate is aberrant even tough there is no single aberrant

statement present in either the then branch or the else branch.

4.1.3 Call and Return Statements

For interprocedural programs, a buggy call statement might be the reason for
the error. Or there might be a bug in the return statement. Consider a very
simple program in Figure 4.10 where a faulty value passed to the procedure
writeToArray in the call statement can cause a buffer overflow to occur.

int globalArray[10];

void writeToArray(int value, int location){

globalArray[location] = value;

}

void main(void) {

writeToArray(0,11);

}

Figure 4.10: Simple example of a buffer overflow that can be triggered by a buggy

call statement

In this program, clearly the error is being caused because of the faulty call
statement. Call or return statements can simply be modeled as assignments.

Suppose we have a procedure p with one input parameter x and one output
parameter res. The input parameter x is assigned to a variable xp in p. On
return, the value of the procedure’s output variable res is stored into the special
variable resp of the caller. The procedure call appear in the following form.

resp = call p(x)
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and in p the return statement appear as

return res

A call statement is aberrant if the assignment x = xp is aberrant. A return
statement is aberrant if the assignment resp = res is aberrant.

4.1.4 TCAS Experiments

In this section we demonstrate the capability of using aberrant statements as
a technique to localize faults by testing our implementation (see Chapter 5)
on TCAS (Traffic Collision Avoidance System) programs from the Siemens test
suite. The Siemens programs were assembled by Tom Ostrand et al. at Siemens
Corporate Research for a study of the fault detection capabilities of control-
flow and data-flow coverage criteria [11]. Programs in the Siemens test suite
perform a variety of tasks. TCAS is aircraft conflict detection and resolution
system. It continuously monitors the radar information to check whether there
is any neighboring aircraft that could represent a potential threat by getting too
close. Depending on different parameters like vertical separation between two
aircrafts and trajectory, TCAS issues a Resolution Advisory (RA) suggesting
the pilot either climb or descend to avoid a collision. The programs used for
our experiments in this section focuses on this very component of TCAS which
is responsible for finding the best RA. The component is made up of 173 lines
of code. The authors from Siemens created 41 versions of the correct program
by injecting one or more faults. The goal was to introduce as realistic faults
as possible. Ten people performed the fault seeding, working mostly without
knowledge of each other’s work. The Siemens programs are described in detail
in the original paper [11]. Along with the faulty versions, the test suite also
provides the original program along with a number of test vectors. The TCAS
program used in this dissertation is obtained from the Software-artifact Infras-
tructure Repository of University of Nebraska1. We ran our implementation
on five faulty versions which we refer to as v1, v2, v6, v7 and v11. The asser-
tion checks used in our experiments were obtained from a previous work using
symbolic execution by Porisini et al. [12].

Table 4.1 shows the results of running our implementation in Ultimate
Automizer on 6 buggy versions of the TCAS program. The column “Line
number” shows the line number where the bug is introduced in the original
program. “Correct version” shows the code at Line number in the original
program and “Buggy Version” shows the mutated code in the faulty version.
v11 contains 3 bugs. With the exception of the third bug in v11, we were able
to pin point all the bug locations using our approach.

Figure 4.11 gives an overview of a faulty version of TCAS (version 2), where
a bug is injected at line 5. The correct version is displayed commented out in
line 6. The bug is a mutation of a constant value from 100 to 300 in the function
Inhibit Biased Climb(). The initializations and declaration of variables and

1
http://sir.unl.edu/portal/index.php
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Table 4.1: Bug details about TCAS programs in our experiments

Line Correct Buggy
Version number version Version

v1 82 !(Down Separation >= ALIM()); !(Down Separation > ALIM());

v2 70 Up Separation + NOZCROSS Up Separation + MINSEP

v6 111 Own Tracked Alt < Own Tracked Alt <=

Other Tracked Alt Other Tracked Alt

v7 57 res = Positive RA Alt Thresh 2; res = 700;

v11 111 Own Tracked Alt < Own Tracked Alt <=

Other Tracked Alt Other Tracked Alt

118 Own Tracked Alt < Own Tracked Alt <=

Other Tracked Alt Other Tracked Alt

138 if() condition **condition removed**

functions that are not relevant for the bug have been omitted in the code in
Figure 4.11. The safety property violated by the program is shown in line 58.
We take one failing test case out of 69 [15] for this version to get a feasible
error trace and analyze it to find aberrant statements. Our algorithm returned
15 aberrant statements in the trace, which means there are 15 potential bug
locations (shown in red). The user now has to look into only 15 statements to
fix the bug which is which is 8.6% of the total number of lines in the program.

Let us now take a closer look at the reported aberrant statements.

1. The aberrant statement at line 55 is too weak for a fix as the return value
can always be modified in a way which can avoid the assertion violation
in the end. Same argument holds for statement at line 49, where alt sep

is the value that is returned.

2. The assignment to the variable enabled at line 39 is based on input vari-
ables and can be quickly checked by the programmer.

3. The assignments at line 44 and 45 are based on the value returned by
the functions Non Crossing Biased Climb() and Non Crossing Biased

Descend() respectively. Both functions call the buggy function Inhibit

Biased Climb(). Both the functions Own Below Threat() and Own Above

Threat() return a value based on the input parameters and hence we can
ignore them for now and look at the other 2 functions.

4. The return values at lines 18 and 30 are again too weak for a fix as in
point 1.

5. The aberrant statements at line 12 and 24 is where the functions
Non Crossing Biased Climb() and Non Crossing Biased Descend() call
the faulty function respectively.

6. The aberrant statements at line 14 and 26 are also potential locations for
a bug fix. This is where the wrong evaluation happens because of the
faulty value returned by Inhibit Biased Climb.
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7. The aberrant statement at line 5 is where the actual bug lies.

4.1.5 Performance

To demonstrate the performance and applicability of our algorithm on error
traces originating from complicated programs, we run our implementation in
Ultimate Automizer (see Chapter 5 ) on programs from the competition on
software verification (SV-COMP). We performed the experiments on a PC with
an Intel Core i7 CPU @ 2.7 GHz running the linux operating system with 15.6
GB RAM. The result is presented in Table 4.2.

Table 4.2: Time comparison with and without aberrance analysis (time in seconds)

Program Trace Time for Overall
Name length aberrance analysis time Difference
loops1 13 0.1 0.2 0.1
loops2 14 0.1 0.2 0.1
loops3 48 0.2 1.6 1.4
recursive1 125 1.7 6.3 4.6
recursive2 328 6.1 14.6 8.5
recursive3 190 10.1 24.8 14.7
recursive4 30 0.2 1.6 1.4
recursive5 126 1.2 5.8 4.6
recursive6 532 14.4 28.3 13.9
ssh1 245 2.8 33 30.2
ssh2 267 5.6 38.6 33
ssh3 139 0.9 6.0 5.1
ssh4 233 3.8 49.8 46
ssh5 244 4.0 19.7 15.7
systemc 376 26.7 32.1 5.4

4.1.6 Related Work

Fault localization is a vast topic in the field of program analysis and an abun-
dance of techniques and methods has been proposed over the years. Vaguely
speaking, the general goal in the field is to identify program statements that
”have something to do with the error”. But the exact notion of what that
means differ quiet a lot. It depends on the program, the programmer and the
error type. Even after decades worth of research, we still have not yet seen
the best fault localization technique. A lot of different approaches have their
own complementary strengths and weaknesses. Nonetheless, as the importance
of software systems increase, the importance of coming up with robust fault
localization techniques has never been more important.

Analyzing a counterexample produced by a software model checker [1,13,14]
has become an accepted technique for fault localization and can be quite useful
for debugging [5,6,15–20]. However, as the size of the counterexample increases,
it becomes almost prohibitively difficult for a human to analyze it manually.
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1 int ALIM () {
2 return Positive_RA_Alt_Thresh(Alt_Layer_Value);
3 {
4 int Inhibit_Biased_Climb () {
5 return (Climb_Inhibit ? Up_Separation + 300 : Up_Separation);
6 /* return (Climb_Inhibit ? Up_Separation + 100 : Up_Separation); */
7 }
8 bool Non_Crossing_Biased_Climb() {
9 int upward_preferred;

10 int upward_crossing_situation;
11 bool result;
12 upward_preferred = Inhibit_Biased_Climb() > Down_Separation;
13 if (upward_preferred) {
14 result = !(Own_Below_Threat()) || ((Own_Below_Threat()) && (!(Down_Separation >= ALIM())));
15 } else {
16 result = Own_Above_Threat() && (Cur_Vertical_Sep >= MINSEP) && (Up_Separation >= ALIM());
17 }
18 return result;
19 }
20 bool Non_Crossing_Biased_Descend() {
21 int upward_preferred;
22 int upward_crossing_situation;
23 bool result;
24 upward_preferred = Inhibit_Biased_Climb() > Down_Separation;
25 if (upward_preferred) {
26 result = Own_Below_Threat() && (Cur_Vertical_Sep >= MINSEP) && (Down_Separation >= ALIM());
27 } else {
28 result = !(Own_Above_Threat()) || ((Own_Above_Threat()) && (Up_Separation >= ALIM()));
29 }
30 return result;
31 }
32 bool Own_Below_Threat() {
33 return (Own_Tracked_Alt < Other_Tracked_Alt);
34 }
35 bool Own_Above_Threat() {
36 return (Other_Tracked_Alt < Own_Tracked_Alt);
37 }
38 int alt_sep_test() {
39 enabled = High_Confidence && (Own_Tracked_Alt_Rate <= OLEV) && (Cur_Vertical_Sep > MAXALTDIFF);
40 tcas_equipped = Other_Capability == TCAS_TA;
41 intent_not_known = Two_of_Three_Reports_Valid && Other_RAC == NO_INTENT;
42 alt_sep = UNRESOLVED;
43 if (enabled && ((tcas_equipped && intent_not_known) || !tcas_equipped)) {
44 need_upward_RA = Non_Crossing_Biased_Climb() && Own_Below_Threat();
45 need_downward_RA = Non_Crossing_Biased_Descend() && Own_Above_Threat();
46 if (need_upward_RA && need_downward_RA)
47 alt_sep = UNRESOLVED;
48 else if (need_upward_RA)
49 alt_sep = UPWARD_RA;
50 else if (need_downward_RA)
51 alt_sep = DOWNWARD_RA;
52 else
53 alt_sep = UNRESOLVED;
54 }
55 return alt_sep;
56 }
57 int main() {
58 assert(alt_sep_test() != UPWARD_RA);
59 }

Figure 4.11: Sample TCAS program. The mutation is in line 5. The correct
version is shown in line 6
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Minimization of counterexample length [3,4] as well as semantic minimization [5]
is, therefore, an ongoing area of research. Apart from just minimization, many
techniques have been developed to analyze counterexamples effectively and ex-
tract useful information that can be used to help the programmer in finding the
bug in the program.

Ball et al. localize faulty statements in the context of model checking by
comparing feasible error traces to “correct” traces (i.e., traces that terminate
correctly) [16]. They call a statement relevant if it does not occur on a correct
trace. In contrast, our analysis based on aberrant statements, does not require
a correct trace.

Jose et al. initiated a line of formula-based fault localization works [15].
Given a feasible error trace, they construct a Boolean unsatisfiable trace formula
consisting of an input I that triggers the error, the trace formula π, and the
negated error condition E:

I ∧ π ∧ ¬E

Passing the formula to a partial MAX-SAT solver, where φ and ¬E are
considered as so-called hard clauses, the solver returns a maximal number of
clauses (from π) that can still be satisfied. All other clauses are then considered
relevant because removing them all would make the trace formula satisfiable,
which corresponds to that the error condition may hold. Our approach based on
aberrant trace elements works on first-order formulas, and we query the theory
solver several times with smaller formulas. When there are several possible error
causes, the partial MAX-SAT solver will choose one with the fewest clauses. The
result of our algorithm is unique.

Ermis et al. adapted the idea to so-called error invariants [21] which are
defined similarly to Craig interpolants. Error invariants are predicates, one
between each statement, that overapproximates the reachable states but are
still strong enough to imply the error condition. If a given predicate is an
error invariant at positions i and j > i, the authors say that the statements in
between are irrelevant and can be dropped, or equivalently, replaced by a skip

statement. Given a set of predicates, the authors find a smallest such covering
of the error trace with error invariants. Error invariants are in general not
unique, and thus two implementations may differ in their output. As another
difference, the authors used the weakest precondition function WP() of the
trace for I in the formula above. We use the precondition function PRE()
which allows us to handle traces that contain nondeterminism. This is a general
limitation of trace analysis techniques based on the unsatisfiable trace formula
because the formula needs to be unsatisfiable. The error invariants approach was
later extended to “flow-sensitive” analysis that supports error conditions inside
if-endif blocks [22], to concolic testing [23], and to concurrent traces [24].

Schäf et al. generalize the idea of error invariants to error invariant au-
tomata [25]. The locations are annotated with error invariants. In its basic
form, the automaton accepts a single feasible error trace where no error invari-
ants repeat, i.e., the trace where all irrelevant statements have been dropped.
The automata can then be mapped back to the original program they were con-
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structed for and be interpreted as a smaller version of this program. In another
view, only those statements that remain in the error invariant automaton are
relevant.

Chao et al. locate portions of an error trace where an error may reside. The
goal is to find out how the error propagates through the error trace and triggers
a failure [6]. They also use a path-based weakest precondition computation
algorithm. They find a minimal set of assigning statements in the error trace
that can make the trace infeasible. This approach, however, is not robust since
it does not take into account the order of the assigning statements in the error
trace.
Other approaches. In the following, we discuss some other techniques that
are not so closely related to our approach of trace based fault localization.

Fault localization techniques that are not based on single error trace analysis
include spectrum-based techniques. A program spectrum is a measurement of
run-time behavior, such as code coverage [26]. Spectrum based techniques com-
pare passing and failing executions obtained from a test suite (usually satisfying
a certain coverage criterion) and then rank the statements according to their rel-
evance [27–30]. Mutation-based techniques extend this idea by also taking into
account how often a statement mutation (i.e., replacing a statement by another
statement) affects the test outcome [31, 32]. We also replace statements, but
we do that symbolically, contrary to performing a concrete replacement and re-
execution of the program. The above mentioned spectrum and mutation based
ranking techniques have been evaluated in a large-scale comparison in [33].

Slice-based techniques delete parts from a program such that it still retains
the original behavior w.r.t. a certain specification [34]. A program statement
is relevant for the error if it occurs in the slice. Static slicing only uses the
source code and accounts for all possible program executions. Dynamic slicing
focuses on one execution for a specific input. A dynamic slice will contain all
the statements that may affect the the values in the slicing criterion for a spe-
cific execution. Zhang et al. evaluated several dynamic slicing techniques for
the purpose of fault localization [35]. Since slicing techniques often only remove
statements that are not relevant for the error, they can be used as a prepro-
cessing step to other, more precise and relatively expensive fault localization
techniques like the one we presented using aberrant trace elements. Program
state-based techniques, as the name suggests, compare the program states of sev-
eral executions, e.g., via delta debugging [36]. Delta debugging isolate relevant
variables by systematically narrowing the state difference between a passing and
a failing run [17,20]

While reporting relevant statements to the developer can be a tremendous
help in debugging, the even better solution would be to automatically repair the
program in a problem closely related to fault localization called program repair.
Several recent approaches to this challenging task have been proposed [37, 38].
At first glance, our fault localization technique based on aberrant statements,
where we can replace an aberrant statement by another one, may seem similar,
but we do not have a guarantee that the new assignment removes the bug for
all executions (nor that it does not introduce new bugs).
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4.2 Detecting Unvalidated Input

4.2.1 Introduction

“All input is evil”, writes Michael Howard in his book Writing Secure Code [39].
A programmer should always make sure that the data received by the program
as an input is reasonable. Any input received by a program from an untrusted
source is a potential target for an attack (in this context, an ordinary user
or an external library is an untrusted source). Hackers look at all sources of
input to the program and attempt to pass in corrupted data of every type
they can imagine. If the program crashes or otherwise behaves in a way it
was not supposed to, the attacker tries to find a way to exploit the problem.
Unvalidated input exploits have been used to take control of operating systems,
steal data, corrupt user’s disks, and more. The issue of input validation is even
more difficult yet critical in web based applications and services because of the
presence of a large number of entry points. Most common security related issues
in web applications is due to the failure to properly validate the input from the
client. Issues like SQL injection, file system attacks and buffer overflows.

In the context of an error trace, we will formally define the subclass of se-
curity vulnerabilities where a user can directly influence the reachability of an
undesired program state. An undesired state here could mean a state which
can lead to consequences like, denial of service (users may be denied access to
legitimate services), degradation of performance (performance can be so poor
that the system is not usable), disclosure of information (the user gains unautho-
rized access to protected information) or modification of data (the user modified
information in an unauthorized manner).

For the sake of consistency with the rest of the thesis, we will call this un-
desired state an error state. We will discuss how to detect the vulnerability
that arises when the reachability of an error state can be controlled by a pro-
gram’s input value. Consider the program in figure 4.12 that demonstrates this
scenario.

1: int get_location(void);

2: int get_value(void);

3:

4: void main(void) {

5: int a[10];

6: int loc, v;

7: loc = get_location(); //Input value from the user

8: v = get_value(); //Input value from the user

9: a[loc] = v;

10: }

Figure 4.12: Simple example of a buffer overflow

A buffer overflow can be triggered if the user inputs the value 11 for the
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variable loc. Moreover, notice that for the value 11, the user has a guarantee
that the program will end up in an error state. Now, consider the program in
Figure 4.13, where the user no longer has this guarantee because of a condition
on the variable s which is true only if the values assigned to loc and v are
validated by the function validate input().

1: int get_location(void);

2: int get_value(void);

3: bool validate_input(int l, int v);

4:

5: void main(void) {

6: int a[10];

7: int loc, v;

8: loc = get_location(); //Input value from the user

9: v = get_value(); //Input value from the user

10: s = validate_input(loc,v);

11: if (s) {

12: a[loc] = v;

13: }

14: }

Figure 4.13: A check on input variables avoid buffer overflow

From here onwards, we say that the program has an unvalidated input if
there is a location where the program gets an input and, for a certain input
value, the user has a guarantee that the program will end up in an error state.

4.2.2 Defining Unvalidated Inputs

We detect the presence of an unvalidated input in the program with the help
of a feasible error trace. A program has an unvalidated input if there exists a
feasible error trace where the following three properties are satisfied:

1. There is some statement sti in the error trace which assigns a value taken
from the user to a variable.

2. There is some input value such that continuing the execution of the trace
from sti, we definitely reach the error.

3. There is some input value such that continuing the execution of the trace
from π[i], we do not reach the error.

These three properties precisely capture our notion of the existence of an un-
validated input in a program. “Definitely” in property 2 provides the guarantee
to the attacker that for the right value, the program execution will always end
up in an error state. In property 3, existence of one or more values such that
the program execution does reach the error state makes it harder for testing
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based approaches to detect the bug and makes it possible for the bug to slip
into production systems.

Definition 5 (Unvalidated Input). Let π be a feasible error trace of length n
and π[i] be an assigning statement that assigns a value to the variable x. The
program has an unvalidated input if π[i] assigns an input value taken from the
user and there exists an execution s0, . . . , sn of π and some values v and w such
that, if we start in the state si, every execution of the trace 〈x := v, π[i+ 1, n]〉
is blocking, and additionally, the trace 〈x := w, π[i + 1, n]〉 has no blocking
execution.

In the above definition, the existence of an execution s0, . . . , sn and a value
v, such that all executions of the trace 〈x := v;π[i+1, n]〉 are blocking if we start
in the state si is the definition of aberrance. What is new here is the existence
of a value w such that no execution is blocking for the trace 〈x := w;π[i+1, n]〉.
We call such trace elements spurring, since for a value w and a state si, assigning
w to x unstoppably spurs all the executions of the trace 〈x := w;π[i + 1, n]〉
towards the error. We can formally define a spurring trace element as:

Definition 6 (Spurring Trace Element). Let π be a feasible trace of length n with
π[i] being an assigning statement that assigns a new value to some variable x.
The statement π[i] is a spurring trace element in π if there exists an execution
s0, . . . , sn of π and some value w such that no execution of the trace 〈x :=
w, π[i+ 1, n]〉 starting in si is blocking.

Armed with the formal definitions of aberrant and spurring statements and
an invalidated input, we can simply write “A program has an unvalidated input
if in one of its feasible error traces, an assigning statement which is taking its
value from a user is both an aberrant and a spurring trace element. ”

4.2.3 Algorithm

Given a feasible error trace, we explain how we can use Algorithm 1 to detect the
existence of an unvalidated input in the program. A user input is modeled as a
nondeterministic havoc(x) statement in the error trace, where x is the variable
which is being assigned the user input value. To detect the existence of an
unvalidated input, we simply have to check if the last aberrant havoc statement
in the error trace is modeled from a user input statement. The procedure is
shown in Algorithm 2. We use Algorithm 1 to find the aberrant statements in
the error trace and check if the last havoc statement represents a user input.

Algorithm correctness

We now show that Algorithm 2 accurately detects if there is an unvalidated
input in the program in accordance with Definition 5.

Theorem 2. Let π be a feasible error trace of length n and π[i] be an over-
approximated user input statement of the form havoc(x) at position i that as-
signs a non-deterministic value to the variable x. If π[i] is the last aberrant
havoc statement in the error trace, then it is also spurring.
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Algorithm 2: Unvalidated input detection in a program

Input: A feasible error trace π of length n
Output: Boolean value indicating the presence of an unvalidated input

1 trace ← error trace π;
2 aberrPos ← aberrance(trace);
3 for j = aberrPos.length() - 1 to 0 do
4 if trace[aberrPos[j]] is not a havoc then continue;
5 if trace[aberrPos[j]] is a user input then return true;
6 return false;

7 end

Proof. Let π[i] be a havoc statement of the form havoc(x) which assigns a
nondeterministic value to the variable x at position i. Since π is a feasible error
trace, we know that there exists an execution s0, . . . , sn and some value w such
that, if we assign w to x, the trace 〈x := w;π[i + 1, n]〉 starting in the state
si has a non-blocking execution. Furthermore, since π[i] is the last aberrant
havoc statement, no execution of the trace 〈x := w;π[i+ 1, n]〉 will be blocking.
Hence, π[i] is a spurring statement.

4.2.4 Discussion

Please note that Algorithm 2 takes as input a feasible error trace π where
the branches are encoded as conglomerates as explained in Section 4.1.2. A
simple check on an input value is not necessarily a validation of that input. By
validating an input, we mean that a user cannot influence the reachability of an
error state by changing the input value. There will be some cases where there
seems to be a check on the value taken by a user but our algorithm will still
detect the presence of an unvalidated input. Consider the example in Figure
4.14.

1: int get_from_user(void);

2: void main(void) {

3: int x = 1;

4: int y = get_from_user(); // Unvalidated Input

5: if (y < 10) {

6: y++;

7: } else {

8: x = 2;

9: }

10: assert (x != 1);

11: }

Figure 4.14: Unvalidated input even tough there is a check on the variable y
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The variable y gets it’s value from the user. There seems to be a check on
the value of the variable y and it does seem that the input value is validated.
But actually the user can still control the reachability of the error by changing
the input value. This example helps bring to light an important property of
unvalidated inputs in a program. Input validation is about validating that the
input value cannot directly control the reachability of the error state. Let’s get
back to our motivating example of a buffer-overflow. In the example in Figure

1: int get_location(void);

2: int get_value(void);

3

4: void main(void) {

5: int array[10];

6: int location,value, r;

7: value = get_value(); // from user

8: location = get_location(); // from user

9: if(location >=0 && location <=10){

10: array[location] = value;

11: }

12: }

Figure 4.15: Unvalidated input even tough there is a check on the variable y

4.15, a buffer-overflow can occur on line 10 because the programmer made a
mistake. The if condition should have location < 10 instead of location

<=10. The algorithm tells us that there is a possibility of a buffer overflow. But
the problem is more serious because it can be controlled by a user input. So it
is a security issue and must be taken more seriously.

In case the error trace contains more then one unvalidated inputs, algorithm
2 cannot detect all unvalidated inputs in the trace at once. But we can say that
there is atleast one unvalidated input in the program which also is a valuable
security information for the user.

4.2.5 Experiments

We apply our technique to three (now fixed) faults in the Linux device drivers.
All of these faults were classified as a security vulnerability and were present
in the official Linux kernel repository2 at some point in time and were fixed
as soon as they were found. We apply our technique to simplified programs
that model the faults with all the unnecessary kernel code removed. The sim-
plified programs were provided to us by the people at the Linux Driver Ver-
ification3(LDV) project at the Russian Academy of Sciences. They were also
responsible for finding and reporting the faults.

2https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/
3linuxtesting.org
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[L7] - int *p;
[L19] # int state = 0;
[L60] - struct inode *dir;
[L62] % dir = allocate_data()
[L64] CALL # ufs_mkdir(dir)
[L52] CALL - lock_ufs()
[L22] COND FALSE - !(state==1)
[L23] RET # state = 1
[L52] - lock_ufs()
[L53] FCALL - inode_inc_link_count()
[L54] CALL # ufs_new_inode(dir)
[L34] COND FALSE - !(!dir)
[L37] CALL, EXPR - dir->inode
[L37] RET, EXPR # dir->inode
[L37] COND FALSE - !(!dir->inode)
[L40] FCALL - f()
[L40] COND TRUE - f()
[L41] CALL - dir->a=0
[L41] RET - dir->a=0
[L47] CALL - lock_ufs()
[L22] COND TRUE - state==1
[L22] - __VERIFIER_error()

Figure 4.16: Error trace for doublelock in the UFS program

We briefly provide the context of the problem along with the commit history
of the patches that fixed the faults. We also explain how our technique is able
to detect the presensce of an unvalidated input with the help of an error trace
generated by the software model checker Ultimate Automizer [1].

Experimental Setup. We will use our implementation in Ultimate Au-
tomizer (see Chapter 5) to detect the presence of unvalidated inputs in all
the three examples. The output contains four columns. The first column con-
tains the line number, the second column contains information about the type
of the statement, the third column contains the aberrance information and the
fourth column the actual statement. We are interested in the third column.
# represents that the statement is aberrant. % means that the statement was
over-approximated and the over-approximated statement is aberrant. If the last
statement marked with % is an assignment, where the value is coming from the
user (or an outside source), then this means that there is an unvalidated input
in the program.

Doublelock in Unix File System

In the Unix File System (UFS), an unvalidated input could introduce an un-
avoidable double-lock. The fault was introduced by a patch (commit history in
Appendix B.1.1) which merged two locks, since they were generally locked and
unlocked at the same time. But this patch introduced a bug where a double-
lock could be caused in the functions ufs new inode() and ufs free inode()

which depended only on the initial input data provided by allocate data().
The problem was eventually found by the LDV project and fixed. We ran

our algorithm on an error trace generated for the simplified program (Appendix
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[L31] # static int ldv_spin_bgc_lock = 1;
[L101] % struct grgpio_priv *priv = get_grgpio_priv();
[L102] % unsigned int irq = get_irq();
[L103] CALL # grgpio_irq_unmap(priv, irq)
[L78] - int index;
[L79] - int i;
[L80] - struct grgpio_lirq *lirq;
[L81] CALL, EXPR # priv->ngpio
[L81] RET, EXPR # priv->ngpio
[L81] # int ngpio = priv->ngpio;
[L83] CALL # ldv_spin_lock_bgc_lock(&priv->bgc_lock)
[L35] COND FALSE - !(ldv_assert(ldv_spin_bgc_lock == 1))
[L36] RET # ldv_spin_bgc_lock = 2
[L83] # ldv_spin_lock_bgc_lock(&priv->bgc_lock)
[L85] - index = -1
[L86] # i = 0
[L86] COND TRUE - i < ngpio
[L87] # lirq = &priv->lirqs[i]
[L88] CALL, EXPR - lirq->irq
[L88] RET, EXPR # lirq->irq
[L88] COND TRUE - lirq->irq == irq
[L89] CALL # grgpio_set_imask(priv, i, 0)
[L63] EXPR, FCALL - get_mask(priv, offset)
[L63] - unsigned long mask = get_mask(priv, offset);
[L66] CALL # ldv_spin_lock_bgc_lock(&priv->bgc_lock)
[L35] COND TRUE - ldv_assert(ldv_spin_bgc_lock == 1)
[L35] - ldv_assert(ldv_spin_bgc_lock == 1)

Figure 4.17: Error Trace for the simplified Aeroflex GRGPIO driver

B.1.2) and were able to confirm the existence of an unvalidated input which
could control the reachability to an error state (double-lock in this case). In
the program, the input statement where the variable dir gets its value from
allocate data() is modeled as havoc(dir) in our setting and is the last aber-
rant havoc statement. The trace along with the aberrance information is shown
in Figure 4.16.

Doublelock in Aeroflex Gaisler GRGPIO

In one of the drivers for Aeroflex Gaisler GRGPIO, a double-lock could be
caused in the method grgpio irq unmap() where it locks the spinlock based
on the value of the variable priv which gets it’s value from an outside source.
The method then called grgpio set imask(priv, i, 0) which unconditionally
locked the spinlock by itself. This could lead to a double lock. The link to the
merged patch that fixed the problem is included in Appendix B.2.1. The link to
the program that models the problem is given in Appendix B.2.2 and the link
to original driver is included in Appendix B.2.3.

The error trace can be seen in Figure 4.17. In the error trace, the variable
irq gets a value from an outside source (get irq() in the program) and is
modeled as havoc(irq) in our setting. havoc(irq) is the last aberrant havoc

in the error trace and hence our algorithm detect the presence of an unvalidated
input.
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[L30] * static int ldv_mutex_ctx_lock = 1;
[L52] - struct imon_context *context;
[L103] EXPR, FCALL - get_interface()
[L103] - struct usb_interface *interface = get_interface();
[L104] CALL, EXPR * imon_probe(interface)
[L55] * int retval = 0;
[L56] - int lirc_minor;
[L57] CALL, EXPR * kzalloc(sizeof(struct imon_context))
[L14] EXPR, FCALL * calloc(1, size)
[L14] EXPR, FCALL * calloc(1, size)
[L14] RET * return calloc(1, size);
[L57] EXPR * kzalloc(sizeof(struct imon_context))
[L57] * context = kzalloc(sizeof(struct imon_context))
[L58] COND FALSE - !(!context)
[L61] CALL # ldv_mutex_lock_ctx_lock(&interface->ctx_lock)
[L34] COND FALSE - !(ldv_assert(ldv_mutex_ctx_lock == 1))
[L35] RET * ldv_mutex_ctx_lock = 2
[L61] # ldv_mutex_lock_ctx_lock(&interface->ctx_lock)
[L63] % lirc_minor = lirc_register_driver()
[L64] COND FALSE - !(lirc_minor < 0)
[L91] RET * return retval;
[L104] EXPR * imon_probe(interface)
[L104] * int ret = imon_probe(interface);
[L105] COND TRUE - ret==0
[L106] CALL - imon_disconnect(interface)
[L95] CALL - ldv_mutex_lock_ctx_lock(&interface->ctx_lock)
[L34] COND TRUE - ldv_assert(ldv_mutex_ctx_lock == 1)
[L34] - ldv_assert(ldv_mutex_ctx_lock == 1)

Figure 4.18: Error trace for simplified program dependent on the LIRC driver

imon probe() exits with mutex acquired

A fault was introduced by a patch (commit link can be seen in Appendix
B.3.1) when it wrongly removed mutex unlock() and consequently the method
imon probe() can exit with the lock acquired if lirc register driver fails.
This could therefore cause an unavoidable double lock based on the value re-
turned by lirc register driver(). The attacker can control the reachability
of the error state (double lock in this case) by causing the lirc register driver to
fail, which obviously is a security vulnerability. LIRC is an open source package
that allows users to receive and send infrared signals with a Linux-based com-
puter system. The merged patch by the Linux Driver Verification Project fixed
the problem (Appendix B.3.2). The programs that models the problem with all
the unnecessary code removed can be seen in Appendix B.3.3. The link to the
Linux driver where the problem was introduced is given in Appendix B.3.4.

The error trace can be seen in Figure 4.18. The variable lirc minor gets
it’s value from the driver (lirc register driver() in the program) and is
modeled as havoc(lirc minor) in our setting. havoc(lirc minor is the last
aberrant havoc in the trace.

4.2.6 Related Work

Input validation is widely accepted as one of the most common causes of many
vulnerabilities in web based services and hence taken very seriously in the web
development community. Buffer overflows, injection attacks, DoS attacks, mem-
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ory leakage, identity theft, privacy compromise and information disclosure are
some of the more serious problems that can be cause be incorrect input valida-
tion. Software systems nowadays work in an increasingly complex and connected
environment where not only there are many sources of inputs to the program,
but there are also a wide range of sources that might be passing the input. An
input can come from a user or a database or another program or a network and
must be validated as early as possible in the data flow.

Programmers use a number of techniques to check the syntactic (syntax) and
semantic (value) correctness of the input values. These techniques are usually
testing based (for example, [40]). The idea to analyze the reachability of an error
state controlled by an input value using error traces produced by a verification
tool (to the extent of our knowledge) is new. Nonetheless, the importance of
applying formal methods to analyze security vulnerability of software systems
has been recognized for quiet some time [41]. Denning presented a mathemat-
ical framework to examine the information flow in the program [42]. The aim
in his work was to come up with a formal analysis technique that can guar-
antee secure information flow in the program. A lot of work has been done
in formally analyzing secure information in a program [43–48]. We however
are not concerned with secure information flow in the program, where the goal
is to regulate the dissemination of information among objects throughout the
systems and guarantee the absence of illicit information leakages through pro-
gram execution. Our goal mainly is to make sure that the input data received
by the program cannot control the reachability of the error because a secure
information flow through the program can still cause the program to fail.
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4.3 Verification Of Open Programs

The use of static verifiers for debugging is still not very popular among common
developers mainly due to the large number of uninteresting warnings generated
by the verifier. Since verifying program correctness is, in general, undecidable,
false warnings are inevitable no matter how sophisticated is the verification
tool. This problem is especially more visible in open programs (programs that
expose a set of external libraries or API methods). Most verifiers aim to verify
that a program does not fail assertions under all possible feasible executions
of the program. This approach works well when the program is closed, i.e.
its execution starts from a well-defined state, and external library methods
are included or their specifications are accurately defined. In the case of open
programs with an unconstrained environment, program verifiers generate a lot
of uninteresting warnings in the absence of precise environment specifications.
Such warnings can overwhelm a user and deviate their attention from the real
bug. Using program verifiers in such circumstances thus require extensive initial
investment in time and effort to model the external libraries.

1 var m: [ i n t ] i n t ;
2 procedure FooBar ( )
3 mod i f i e s m;
4 {
5 var w: i n t ;
6 c a l l w := env1 ( ) ; // Demonic Environment
7 // assume w >= 1 ;
8 a s s e r t w != NULL;
9 m[w] := 2 ;

10 }
11 procedure Baz ( z : i n t )
12 mod i f i e s m;
13 {
14 a s s e r t z != NULL; // f a i l u r e due to t rue bug
15 m[ z ] := 4 ;
16 }
17 // Entry po int
18 procedure Foo ( )
19 mod i f i e s m;
20 {
21 c a l l FooBar ( ) ;
22 c a l l Baz (NULL) ; // TRUE BUG
23 }
24 // Environment
25 procedure env1 ( ) r e tu rn s ( r : i n t ) ;

Figure 4.19: An example of an open program

Program in Figure 4.19 shows an example of a program with unconstrained
environment. This example is a shortened version of the motivating example
presented in [49]. The program has three procedures Foo, FooBar, Baz and one
external library procedure env1. The variables in the program can be scalars
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(of type int) or arrays (e.g. m) that map int to int. Foo is the entry position of
the program. The return value of the environment procedure env1 is the source
of unknown or unconstrained value in the program. Most verifiers are bound
to return assertion failures for each assertion in the program. This is due to
the fact that the assertion in line 8 is an assertion over an unknown value and
verifiers tend to be conservative (over-approximate) in the face of unknowns.
Such tendency of verifiers force them to see every unknown environment as
demonic. Which in this case will lead to a warning of a possible assertion
failure at line 8.

In this section, we present a technique to provide only high-quality warnings
for open programs. Warnings that will help the programmer in finding and
fixing a bug without the overhead of modeling external libraries and APIs. For
an assertion and a feasible error trace that leads to the assertion violation, we
will use aberrance analysis on the feasible error trace to judge the quality of the
assertion failure and whether it should be reported to the user.

4.3.1 Using Aberrance To Reduce Uninteresting Warn-
ings

Given a program with an unconstrained environment, our goal is to only report
interesting warnings (assertion failures). Interesting warnings, here, are in the
context of program debugging and will help the user in finding and fixing the
bug. Intuitively, a warning is interesting if it is not dependent only on a value
coming from an external library or the environment. For the program in Figure
4.20, assert(y!=0) is an assertion on a variable that is taking it’s value from the
environment. The failure of the assertion assert(z!=10) points to a possible
buggy initialization either to the variable x in line 1 or a buggy assignment to
the variable z at line 4. From this point of you, reporting the assertion failure
at line 5 is more interesting to the user then the one at line 3, since reporting
this assertion failure can help the user in fixing the bug.

1: x = 5;

2: y = external_library();

3: assert (y != 0);

4: z = x + 5;

5: assert (z != 10);

Figure 4.20: A program with two assertions. Reporting the second failure assertion

is more useful from debugging perspective

For a feasible error trace π1 whose execution leads to a failure of the asser-
tion α1, we can use aberrant trace elements in π1 to determine if the assertion
failure is interesting enough to be reported to the user. The assignment of a
value coming in from the environment/external library is modeled as a haovc

statement in our setting. For the program in Figure 4.20, we have the follow-
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ing feasible error trace, π1, for which there exists an execution such that the
assertion assert(y!=0) is violated.

x = 5 havoc(y) y == 0

The only aberrant statement in π1 is an assignment where the value is coming
from an external library. From a debugging point of you, the only fix for the
programmer is to modify this assignment. Assuming that external library()

is correct, this assertion violation is of no use to the user and will be an unin-
teresting warning.

For the assertion assert(z!=10), we have the following feasible error trace
π2.

x = 5 havoc(y) y != 0 z = x+5 z == 10

In π2, the existence of aberrant statements other then just the assignment to a
variable from an external library points to multiple fixes in the program that
can fix the error trace. Hence this assertion failure is more interesting to the
user because it provides the programmer with options for possible fixes that can
avoid the assertion failure.

We want to suppress those assertion violations for which, in the correspond-
ing feasible error trace, only the assignments that are taking it’s value from
the environment (over-approximated as havoc statements in our setting) are
aberrant. This is because we want to suppress those warnings that are only
dependent on the external libraries or the environment.

If all the aberrant statements in an error trace are taking their value from the
environment, then we say that the trace and the assertion violation is angelically
safe and should not be reported to the user. Otherwise, we call the trace and
the assertion violation angelically unsafe.

4.3.2 Using A Scoring Function To Rank Warnings

In some programs, a user might not want to strictly classify an assertion vi-
olation as angelically safe or unsafe. Consider, for example, the case when a
program contain statements that modifies the values returned by an external
library and the assertion is on the modified value. The assertion is dependent
on the environment, but not directly. There is a chance that the modification
is buggy and that is the cause for the assertion violation. Or consider a case
where, the program contains many statements that assign a value to a variable
taken from the environment. In this case, the probability that there is a buggy
modification in the trace is statistically low and vice versa. Strict classification
of an assertion failure might not be the most helpful solution to the programmer
in such scenarios.

We, therefore, use a scoring function that assigns a score to an error trace
based on the ratio between aberrant assignment statements and aberrant havoc
statements (that model the environment). Consider a very simple program
in Figure 4.21. In this program, the assertion assert(y > 0) is indirectly
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dependent on the value returned by the environment. After getting the value
from the environment, the assignment statement y=x-10 modifies it. This can
be a buggy modification.

1: x = env(); // environment

2: y = x - 10;

3: assert (y > 0);

Figure 4.21: A program where it is hard to strictly classify an assertion failure

The score depends on the number of aberrant assignment statements and the
number of aberrant havoc statements. In a trace, where only havoc statements
are aberrant, the scoring function returns the minimum score and when all the
aberrant statements are deterministic assignment statements, then it returns
the maximum score.

score :=
number of aberrant assignment statements

total number of aberrant statements

For the case when all the aberrant statements in a trace are deterministic assign-
ment statements, we will get the highest score 1. We get a score of zero when
only havoc statements are aberrant in a trace. For all the cases in between,
we get a score between zero and one based on the number of aberrant havoc
and assignment statements. For the program in Figure 4.21, with the following
error trace, we get a ranking score of 0.5 .

havoc(x) y = x - 10 y <= 0

The assertion can be violated due to the value returned by the environment or
because of a buggy modification of the environment value.

For the program in Figure 4.20, the assertion failure at line 3 (assert(y!=0))
will have a score of 0 since in the feasible error trace that leads to the assertion
failure, the only aberrant statement is a havoc statement that models the as-
signment of a value from the environment. The assertion failure at line 5 will
have a score of 2/3 = 0.6.

Consider the identical programs in Figure 4.22. In the program code in
Figure 4.22b, the variable x gets its value from the external library, and then
modified two times. A variable p is initialized at line 4, which is then modified
in line 5. The probability that the assertion failure at line 6 is caused by a
faulty assignment/modification is higher then in program in Figure 4.22a. From
a debugging perspective, the assertion failure in the second program must be
scored higher then the program in Figure 4.22a.

Discussion

We presented a ranking scheme based on a simple statistical measure to rank
error warnings for open programs. One of the major hurdles in the adoption
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1: x := external_library();

2: y := external_library2();

3: z := y + 1;

4: p := external_library3();

5: q := p + x;

6: assert (q + z > 10);

(a) Program code with many environment
dependent assignments

1: x := external_library();

2: y := x + 1;

3: z := y + 1;

4: p := 5;

5: q := p + 1;

6: assert (q + z > 10);

(b) Program code with assignments and
modifications

havoc x havoc y z := y + 1 havoc p q := p + 1 assume(q + z <= 10)

(c) Error trace for program in 4.22a

havoc x y := x + 1 z := y + 1 p := 5 q := p + 1 assume(q + z <= 10)

(d) Error trace for program in 4.22b

Figure 4.22: Comparison between two identical programs

of static verification tools is the generation of a large number of error reports.
This is because such tools often use approximation schemes which leads to false
positives. These false positives can quickly damage user’s confidence in such
a tool by hiding real error warnings amidst the false ones. In fact, tools that
effectively find errors can have as much as 30-100% false positives [50]. Ranking
schemes based on statistical models, that rank error warnings would be a step
in the right direction. These ranking schemes should be able to assign high
confidence score to real or true error warnings and a low score to false positives.
Users tend to immediately discard the tool if the first few error warnings they
see are false positives. Ranking real error warnings higher can help us avoid
just that.

4.3.3 Related Work

Verifying program correctness can be challenging in the presence of an uncon-
strained environment. If a program contains calls to an external library or an
API, the verifier tends to be conservative (over-approximate) and will report a
warning if it can find a return value for the library call such that the assertion
fails. Such warnings are not that interesting for a developer because they are
not very useful for debugging. Ankush et al. called them dumb warnings and
proposed a technique called angelic verification to filter out warnings that occur
due to demonic assumptions about the environment by the verifier [49]. The
verifier is constrained to report warnings only when no acceptable environment
specification exits to prove the assertion. Saurabh et al. explore the possibil-
ity of automatically prioritizing warnings that result due to imprecisions in the
harness [51]. A harness is used to specify the preconditions before calling an
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external method. If such a harness is not specified correctly, the static analysis
will report a warning in the program calling the external method. However, the
warning does not reveal a bug in the program, rather a problem in the harness
that was used to invoke the external method. Sam et al. [52] propose a param-
eterized framework for prioritizing assertion failures. However, their method
is expensive and can be only applied intraprocedurally. The task of analyzing
error warnings is also closely related to the work done by Dillig et al. [53] on
classifying error reports in the context of abductive inference problem, where
the goal is to find an explanatory hypothesis for a desired outcome. Their tech-
nique involve the computation of small relevant queries presented to the user
that captures the information required to either validate or discard the error
warning. The goal in angelic non-determinism [54] is to check if the assertion
failures caused by non-deterministic code can be avoided by replacing it with
deterministic code. Kremeneck [50] pose the problem of ranking error warnings
as a typical classification problem. The classification system has to rank an er-
ror warning as either a real warning (true error) or a false positive. The ranking
is then simply based on the confidence in the classification.
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4.4 Over-Approximated Statements

Most programming languages have a rich syntax and provide standard libraries
such as math.h with complicated functions. Software model checkers typically
over-approximate such statements if they cannot be handled exactly. When a
software model checker returns an error trace with over-approximated state-
ments, the feasibility status of that error trace is unknown. The reason is that
the error trace might only be feasible due to the over-approximation that was
injected for the analysis. Accordingly, in such cases one cannot say if the safety
property of the program is really violated or not.

Consider now the case that we have an over-approximated assignment state-
ment which is not aberrant. This is equivalent to saying that there is no concrete
assignment that makes the trace infeasible. From this fact we can conclude that
this particular over-approximation did not affect the feasibility of the trace.

We can generalize this observation to multiple over-approximated state-
ments: If all the over-approximated assignment statements in the error trace
are not aberrant, then we can conclude that the original error trace is feasible
and the program is unsafe.

We illustrate the idea with the following feasible error trace.

i = 0 x = 3.14159 y = sin(x) assume(i == 0)

The following is a simple overapproximation that avoids the trigonometry.

i = 0 x = 3.14159 havoc(y) assume(i == 0)

Assume that a software model checker has shown feasibility of this over-
approximated error trace. Observe that in both traces only the first statement
is aberrant. In particular, the third statement that was over-approximated is
not aberrant. So we can infer that the original error trace must also be feasible.

To conclude, in certain cases we can use aberrance to improve a software
model checker’s result from “unknown” to “unsafe”.
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Chapter 5

Aberrance In Ultimate
Automizer

We have implemented our algorithm to compute aberrant statements in fea-
sible error traces (including error traces with branches) in Ultimate Au-
tomizer1 [55] which is a toolchain in Ultimate2 software analysis framework.
Ultimate consists of several libraries and plugins that perform various steps
of program analysis, for example, parsing source code or transforming program
representation. Ultimate Automizer verifies program safety properties (e.g.
validity of assert statements, validity of procedure contracts, reachability of an
error function/error location or memory safety) based on an automata theoretic
approach to software verification [1, 55–58]. The implementation allows us to
test the application of aberrance in fault localization as described in Section 4.1,
detection of unvalidated inputs as described in Section 4.2 and verification of
open programs as described in Section 4.3.

5.1 Basic Aberrance Analysis

The algorithm to compute aberrant statements is implemented in the Ulti-
mate Automizer tool chain and allows us to directly analyze any error trace
generated by Ultimate Automizer for programs that violate a safety prop-
erty. The basic implementation of the algorithm which analyze an error trace
without taking into account the branch information can be activated in the
settings for Automizer by selecting the option “SINGLE TRACE” under the
setting “Highlight relevant statements in error traces” as shown in Figure 5.1.

In the implementation, for convenience, we call it “single trace analysis”
as opposed to “multi-trace analysis” where we take the branches in the error
trace into account. Enabling the setting will run the aberrance analysis on the
trace and while reporting the error trace, Ultimate Automizer will report

1https://ultimate.informatik.uni-freiburg.de/automizer/
2https://ultimate.informatik.uni-freiburg.de
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Figure 5.1: Setting to enable basic aberrance analysis on error traces in Ultimate
Automizer

the aberrance status for each statement in the trace. With the setting enabled,
the output will contain four columns. The first column shows the line number.
The second column specifies the kind of element displayed in this line. The
third column indicates if the statement is aberrant or not. The fourth column
shows the statement. Figure something something shows the result of running
an example program from the publicly available Ultimate repository. Figure
5.2 shows a snapshot for the example program.

Figure 5.2: Output with the setting to compute aberrant statements enabled. The

third column (marked in red) contains the aberrance information.
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5.2 Aberrance On Traces With Branches

As described in Section 4.1.2, we also can take into account the branching infor-
mation from the CFG of the program to improve precision in fault localization.
In the implementation, for convenience, we call it multi-trace analysis. We get
the branching information from the CFG which is available in Ultimate Au-
tomizer. Enabling the setting will replace the branches in an error trace with
conglomerates. For aberrant conglomerates, the implementation will revert the
conglomerate back to the original branch in the hope to find aberrant state-
ments inside the branch. This process is recursive to deal with the error traces
with nested branches.

Figure 5.3: Setting to enable aberrance analysis for error traces with branches in

Ultimate Automizer

5.3 Verification Of Open Programs

As described in Section 4.3, we can use the information from the aberrance anal-
ysis on a feasible error trace to suppress an error warning. In case of programs

Figure 5.4: Setting to suppress angelically safe error traces from displaying in the

output console
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with multiple assertions, enabling the setting “Angelic Verification Mode” will
not display those error traces where only the over-approximated assignment
statements are aberrant. Enabling the setting will also calculate and “angelic
score” for each trace as described in Section 4.3.2. The angelic score can be
seen under “ErrorLocalizationStatistics” in the output console.
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Chapter 6

Conclusion

Coming up with automatic techniques to extract value from error traces pro-
duced by software model checkers remain an important task. We presented a
new approach to statically analyze error traces and discussed its application
in fault localization, security, verification of open programs and increasing the
output precision for software model checkers. The technique is based on finding
those trace elements that can single-handedly make the trace infeasible. We
presented an efficient algorithm to find such statements and prove its correct-
ness.

In fault localization, our approach can help the programmer in finding simple
bug fixes. We presented a modification in the encoding of the error traces to
accommodate branches. The approached was tested on some faulty versions of
TCAS programs from the Siemens test suite. We showed how our technique
helped us in pin pointing the fault in one of the sample TCAS programs.

Another application we discussed was in security, where we presented a tech-
nique to detect the presence of unvalidated inputs in a program given a feasible
error trace. We showed the applicability of our technique by testing it on real
world security errors from the Linux device drivers.

Suppressing and later ranking error warnings in programs that expose exter-
nal libraries and APIs is yet another interesting application of aberrant state-
ments. Lastly, we showed that aberrant statements can be used to increase the
precision of software model checkers for error traces where some statements are
over-approximated.

The algorithm is implemented in a publicly available framework for program
analysis, Ultimate, that helped us to test the applicability of our approach in
fault localization and security on real world benchmarks with promising results.
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[21] Evren Ermis, Martin Schäf, and Thomas Wies. Error invariants. In Dimitra
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Appendix A

Program Names

loops1 svcomp/c/loop-acceleration/multivar false-unreach-call1 true-termination.i.

loops2 svcomp/c/loop-acceleration/phases false-unreach-call2 false-termination.i.

loops3 svcomp/c/loop-acceleration/underapprox false-unreach-call1 true-termination.i.

recursive1 svcomp/c/recursive-simple/fibo 2calls 5 false-unreach-call true-termination.c.

recursive2 svcomp/c/recursive-simple/fibo 7 false-unreach-call true-termination.c.

recursive3 svcomp/c/recursive-simple/id i25 o25 false-unreach-call true-termination.c.

recursive4 svcomp/c/recursive/Addition02 false-unreach-call true-no-overflow true-
termination.c.

recursive5 svcomp/c/recursive/Fibonacci04 false-unreach-call true-no-overflow true-
termination.c.

recursive6 svcomp/c/recursive/Fibonacci05 false-unreach-call true-no-overflow true-
termination.c.

ssh1 svcomp/c/ssh-simplified/s3 clnt 1 false-unreach-call true-termination.cil.c.

ssh2 svcomp/c/ssh-simplified/s3 clnt 3 false-unreach-call true-termination.cil.c.

ssh3 svcomp/c/ssh-simplified/s3 srvr 10 false-unreach-call false-termination.cil.c.

ssh4 svcomp/c/ssh-simplified/s3 srvr 13 false-unreach-call false-termination.cil.c.

ssh5 svcomp/c/ssh-simplified/s3 srvr 1 false-unreach-call false-termination.cil.c.

systemc svcomp/c/systemc/transmitter.15 false-unreach-call false-termination.cil.c.

62



Appendix B

Unvalidated Input
Detection

B.1 Doublelock in Unix File System

B.1.1 Patch that introduced the bug

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/

?id=9ef7db7f38d0472dd9c444e42d5c5175ccbe5451

B.1.2 Simplified program

https://github.com/ultimate-pa/ultimate/blob/dev/trunk/examples/programs/

toy/errorLocalization/vadim/paths_32_7a_ufs.c

B.2 Doublelock in Aeroflex Gaisler GRGPIO

B.2.1 Patch that fixed the problem

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/

drivers/gpio/gpio-grgpio.c?id=7fa25937542358bfa01ef5c5a1e9a00bd164c000

B.2.2 Simplified code

https://github.com/ultimate-pa/ultimate/blob/dev/trunk/examples/programs/

toy/errorLocalization/vadim/paths_39_7a_gpio_grgpio.c

B.2.3 Original driver

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/drivers/

gpio/gpio-grgpio.c
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B.3 imon probe() exits with mutex acquired

B.3.1 Buggy commit

Commit that introduced the bug: https://git.kernel.org/pub/scm/linux/

kernel/git/torvalds/linux.git/commit/drivers/staging/media/lirc/lirc_imon.

c?id=af8a819a2513df4be461c6a29e3bdee6e23cf3be

B.3.2 Patch that fixed the problem

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/

drivers/staging/media/lirc/lirc_imon.c?id=b833d0df943d70682e288c38c96b8e7bfff4023a

B.3.3 Simplified code

https://github.com/ultimate-pa/ultimate/blob/dev/trunk/examples/programs/

toy/errorLocalization/vadim/paths_32_7a_lirc_imon.c

B.3.4 Driver

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/drivers/

staging/media/lirc/lirc_imon.c?id=0d2b7ea9287d39e87531d233ba885263e6160127
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