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Abstract. In recent years, there has been significant progress in the
development and industrial adoption of static analyzers, specifically of
abstract interpreters. Such analyzers typically provide a large, if not
huge, number of configurable options controlling the analysis precision
and performance. A major hurdle in integrating them in the software-
development life cycle is tuning their options to custom usage scenarios,
such as a particular code base or certain resource constraints.
In this paper, we propose a technique that automatically tailors an ab-
stract interpreter to the code under analysis and any given resource con-
straints. We implement this technique in a framework, tAIlor, which
we use to perform an extensive evaluation on real-world benchmarks.
Our experiments show that the configurations generated by tAIlor are
vastly better than the default analysis options, vary significantly de-
pending on the code under analysis, and most remain tailored to several
subsequent code versions.

1 Introduction

Static analysis inspects code, without running it, in order to prove properties or
detect bugs. Typically, static analysis approximates code behavior, for instance,
because checking the correctness of most properties is undecidable. Performance
is another important reason for this approximation. Typically, the closer the
approximation is to the actual code behavior, the less efficient and the more
precise the analysis is, that is, the fewer false positives it reports. For less tight
approximations, the analysis tends to become more efficient but less precise.

Recent years have seen tremendous progress in the development and indus-
trial adoption of static analyzers. Notable successes include Facebook’s Infer [8,7]
and AbsInt’s Astrée [5]. Many popular analyzers, such as these, are based on
abstract interpretation [12], a technique that abstracts the concrete program
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semantics and reasons about its abstraction. In particular, program states are
abstracted as elements of abstract domains. Most abstract interpreters offer a
wide range of abstract domains that impact the precision and performance of
the analysis. For instance, the Intervals domain [11] is typically faster but less
precise than Polyhedra [16], which captures linear inequalities among variables.

In addition to the domains, abstract interpreters usually provide a large
number of other options, for instance, whether backward analysis should be
enabled or how quickly a fixpoint should be reached. In fact, the sheer number of
option combinations (over 6M in our experiments) is bound to overwhelm users,
especially non-expert ones. To make matters worse, the best option combinations
may vary significantly depending on the code under analysis and the resources,
such as time or memory, that users are willing to spend.

In light of this, we suspect that most users resort to using the default options
that the analysis designer pre-selected for them. However, these are definitely
not suitable for all code. Moreover, they do not adjust to different stages of
software development, e.g., running the analysis in the editor should be much
faster than running it in a continuous integration (CI) pipeline, which in turn
should be much faster than running it prior to a major release. The alternative of
enabling the (in theory) most precise analysis can be even worse, since in practice
it often runs out of time or memory as we show in our experiments. As a result,
the widespread adoption of abstract interpreters is severely hindered, which is
unfortunate since they constitute an important class of practical analyzers.

Our approach. To address this issue, we present the first technique that
automatically tailors a generic abstract interpreter to a custom usage scenario.
With the term custom usage scenario, we refer to a particular piece of code and
specific resource constraints. The key idea behind our technique is to phrase the
problem of customizing the abstract-interpretation configuration to a given usage
scenario as an optimization problem. Specifically, different configurations are
compared using a cost function that penalizes those that prove fewer properties
or require more resources. The cost function can guide the configuration search of
a wide range of existing optimization algorithms. This problem of tuning abstract
interpreters can be seen as an instance of the more general problem of algorithm
configuration [31]. In the past, algorithm configuration has been used to tune
algorithms for solving various hard problems, such as SAT solving [33,32], and
more recently, training of machine-learning models [3,52,18].

We implement our technique in an open-source framework called tAIlor5,
which configures a given abstract interpreter for a given usage scenario using a
given optimization algorithm. As a result, tAIlor enables the abstract inter-
preter to prove as many properties as possible within the resource limit without
requiring any domain expertise on behalf of the user.

Using tAIlor, we find that tailored configurations vastly outperform the
default options pre-selected by the analysis designers. In fact, we show that
this is possible even with very simple optimization algorithms. Our experiments

5The tool implementation is found at https://github.com/Practical-Formal-Methods/

tailor and an installation at https://doi.org/10.5281/zenodo.4719604.

https://github.com/Practical-Formal-Methods/tailor
https://github.com/Practical-Formal-Methods/tailor
https://doi.org/10.5281/zenodo.4719604
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also demonstrate that tailored configurations vary significantly depending on
the usage scenario—in other words, there cannot be a single configuration that
fits all scenarios. Finally, most of the generated configurations remain tailored
to several subsequent code versions, suggesting that re-tuning is only necessary
after major code changes.

Contributions. We make the following contributions:

1. We present the first technique for automatically tailoring abstract inter-
preters to custom usage scenarios.

2. We implement our technique in an open-source framework called tAIlor.
3. Using a state-of-the-art abstract interpreter, Crab [25], with millions of con-

figurations, we show the effectiveness of tAIlor on real-world benchmarks.

2 Overview

We now illustrate the workflow and tool architecture of tAIlor and provide
examples of its effectiveness.

Terminology. In the following, we refer to an abstract domain with all its
options (e.g., enabling backward analysis or more precise treatment of arrays
etc.) as an ingredient.

As discussed earlier, abstract interpreters typically provide a large number of
such ingredients. To make matters worse, it is also possible to combine different
ingredients into a sequence (which we call a recipe) such that more properties are
verified than with individual ingredients. For example, a user could configure the
abstract interpreter to first use Intervals to verify as many properties as possible
and then use Polyhedra to attempt verification of any remaining properties. Of
course, the number of possible configurations grows exponentially in the length
of the recipe (over 6M in our experiments for recipes up to length 3).

Workflow. The high-level architecture of tAIlor is shown in Fig. 1. It takes
as input the code to be analyzed (i.e., any program, file, function, or fragment),
a user-provided resource limit, and optionally an optimization algorithm. We
focus on time as the constrained resource in this paper, but our technique could
be easily extended to other resources, such as memory.

The optimization engine relies on a recipe generator to generate a fresh recipe.
To assess its quality in terms of precision and performance, the recipe evaluator
computes a cost for the recipe. The cost is computed by evaluating how precise
and efficient the abstract interpreter is for the given recipe. This cost is used by
the optimization engine to keep track of the best recipe so far, i.e., the one that
proves the most properties in the least amount of time. tAIlor repeats this
process for a given number of iterations to sample multiple recipes and returns
the recipe with the lowest cost.

Zooming in on the evaluator, a recipe is processed by invoking the abstract
interpreter for each ingredient. After each analysis (i.e., one ingredient), the
evaluator collects the new verification results, that is, the verified assertions. All
verification results that have been achieved so far are subsequently shared with
the analyzer when it is invoked for the next ingredient. Verification results are
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Figure 1: Overview of our framework.

shared by converting all verified assertions into assumptions. After processing
the entire recipe, the evaluator computes a cost for the recipe, which depends
on the number of unverified assertions and the total analysis time.

In general, there might be more than one recipe tailored to a particular
usage scenario. Näıvely, finding one requires searching the space of all recipes.
Sect. 4.3 discusses several optimization algorithms for performing this search,
which tAIlor already incorporates in its optimization engine.

Examples. As an example, let us consider the usage scenario where a user
runs the Crab abstract interpreter [25] in their editor for instant feedback during
code development. This means that the allowed time limit for the analysis is very
short, say, 1 sec. Now assume that the code under analysis is a program file6 of the
multimedia processing tool ffmpeg, which is used to evaluate the effectiveness of
tAIlor in our experiments. In this file, Crab checks 45 assertions for common
bugs, i.e., division by zero, integer overflow, buffer overflow, and use after free.

Analysis of this file with the default Crab configuration takes 0.35 sec to
complete. In this time, Crab proves 17 assertions and emits 28 warnings about
the properties that remain unverified. For this usage scenario, tAIlor is able to
tune the abstract-interpreter configuration such that the analysis time is 0.57 sec
and the number of verified properties increases by 29% (i.e., 22 assertions are
proved). Note that the tailored configuration uses a completely different abstract
domain than the one in the default configuration. As a result, the verification
results are significantly better, but the analysis takes slightly longer to complete
(although remaining within the specified time limit). In contrast, enabling the
most precise analysis in Crab verifies 26 assertions but takes over 6 min to
complete, which by far exceeds the time limit imposed by the usage scenario.

While it takes tAIlor 4.5 sec to find the above configuration, this is time well
invested; the configuration can be re-used for several subsequent code versions.
In fact, in our experiments, we show that generated configurations can remain
tailored for at least up to 50 subsequent commits to a file under version control.
Given that changes in the editor are typically much more incremental, we expect
that no re-tuning would be necessary at all during an editor session. Re-tuning

6
https://github.com/FFmpeg/FFmpeg/blob/master/libavformat/idcin.c

https://github.com/FFmpeg/FFmpeg/blob/master/libavformat/idcin.c
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may be beneficial after major changes to the code under analysis and can happen
offline, e.g., between editor sessions, or in the worst case overnight.

As another example, consider the usage scenario where Crab is integrated
in a CI pipeline. In this scenario, users should be able to spare more time for
analysis, say, 5 min. Here, let us assume that the analyzed code is a program
file7 of the curl tool for transferring data by URL, which is also used in our
evaluation. The default Crab configuration takes 0.23 sec to run and only verifies
2 out of 33 checked assertions. tAIlor is able to find a configuration that takes
7.6 sec and proves 8 assertions. In contrast, the most precise configuration does
not terminate even after 15 min.

Both scenarios demonstrate that, even when users have more time to spare,
the default configuration cannot take advantage of it to improve the verification
results. At the same time, the most precise configuration is completely impracti-
cal since it does not respect the resource constraints imposed by these scenarios.

3 Background: A Generic Abstract Interpreter

Many successful abstract interpreters (e.g., Astrée [5], C Global Surveyor [53],
Clousot [17], Crab [25], IKOS [6], Sparrow [46], and Infer [8]) follow the generic
architecture in Fig. 2. In this section, we describe its main components to show
that our approach should generalize to such analyzers.

Memory domain. Analysis of low-level languages such as C and LLVM-
bitcode requires reasoning about pointers. It is, therefore, common to design
a memory domain [42] that can simultaneously reason about pointer aliasing,
memory contents, and numerical relations between them.

Pointer domains resolve aliasing between pointers, and array domains rea-
son about memory contents. More specifically, array domains can reason about
individual memory locations (cells), infer universal properties over multiple cells,
or both. Typically, reasoning about individual cells trades performance for pre-
cision unless there are very few array elements (e.g., [22,42]). In contrast, rea-
soning about multiple memory locations (summarized cells) trades precision for
performance. In our evaluation, we use Array smashing domains [5] that abstract
different array elements into a single summarized cell. Logico-numerical domains
infer relationships between program and synthetic variables, introduced by the
pointer and array domains, e.g., summarized cells.

Next, we introduce domains typically used for proving the absence of run-
time errors in low-level languages. Boolean domains (e.g., flat Boolean, BD-
DApron [1]) reason about Boolean variables and expressions. Non-relational do-
mains (e.g., Intervals [11], Congruence [23]) do not track relations among differ-
ent variables, in contrast to relational domains (e.g., Equality [35], Zones [41],
Octagons [43], Polyhedra [16]). Due to their increased precision, relational do-
mains are typically less efficient than non-relational ones. Symbolic domains (e.g.,
Congruence closure [9], Symbolic constant [44], Term [21]) abstract complex ex-
pressions (e.g., non-linear) and external library calls by uninterpreted functions.

7
https://github.com/curl/curl/blob/master/lib/cookie.c

https://github.com/curl/curl/blob/master/lib/cookie.c
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Figure 2: Generic architecture of an abstract interpreter.

Non-convex domains express disjunctive invariants. For instance, the DisInt do-
main [17] extends Intervals to a finite disjunction; it retains the scalability of the
Intervals domain by keeping only non-overlapping intervals. On the other hand,
the Boxes domain [24] captures arbitrary Boolean combinations of intervals,
which can often be expensive.

Fixpoint computation. To ensure termination of the fixpoint computation,
Cousot and Cousot introduce widening [12,14], which usually incurs a loss of
precision. There are three common strategies to reduce this precision loss, which
however sacrifice efficiency. First, delayed widening [5] performs a number of
initial fixpoint-computation iterations in the hope of reaching a fixpoint before
resorting to widening. Second, widening with thresholds [37,40] limits the number
of program expressions (thresholds) that are used when widening. The third
strategy consists in applying narrowing [12,14] a certain number of times.

Forward and backward analysis. Classically, abstract interpreters ana-
lyze code by propagating abstract states in a forward manner. However, abstract
interpreters can also perform backward analysis to compute the execution states
that lead to an assertion violation. Cousot and Cousot [13,15] define a forward-
backward refinement algorithm in which a forward analysis is followed by a back-
ward analysis until no more refinement is possible. The backward analysis uses
invariants computed by the forward analysis, while the forward analysis does not
explore states that cannot reach an assertion violation based on the backward
analysis. This refinement is more precise than forward analysis alone, but it may
also become very expensive.

Intra- and inter-procedural analysis. An intra-procedural analysis ana-
lyzes a function ignoring the information (i.e., call stack) that flows into it, while
an inter-procedural analysis considers all flows among functions. The former is
much more efficient and easy to parallelize, but the latter is usually more precise.
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Algorithm 1: Optimization engine.

1 Function Optimize(P , rmax , lmax , idom , iset , recinit , GenerateRecipe,
Accept) is

2 // Phase 1 (optimize domains)
3 recbest := reccurr := recinit
4 costbest := costcurr := Evaluate(P , rmax , recbest)
5 for l := 1 to lmax do
6 for i := 1 to idom · l do
7 recnext := GenerateRecipe(reccurr , l)
8 costnext := Evaluate(P , rmax , recnext)
9 if costnext < costbest then

10 recbest , costbest := recnext , costnext

11 if Accept(costcurr , costnext) then
12 reccurr , costcurr := recnext , costnext

13 // Phase 2 (optimize settings)
14 for i := 1 to iset do
15 recmut := MutateSettings(recbest)
16 costmut := Evaluate(P , rmax , recmut)
17 if costmut < costbest then
18 recbest , costbest := recmut , costmut

19 return recbest

4 Our Technique

This section describes the components of tAIlor in detail; Sects. 4.1, 4.2, 4.3
explain the optimization engine, recipe evaluator, and recipe generator (Fig. 1).

4.1 Recipe Optimization

Alg. 1 implements the optimization engine. In addition to the code P and the
resource limit rmax , it also takes as input the maximum length of the generated
recipes lmax (i.e., the maximum number of ingredients), a function to generate
new recipes GenerateRecipe (i.e., the recipe generator from Fig. 1), and four
other parameters, which we explain later.

A tailored recipe is found in two phases. The first phase aims to find the
best abstract domain for each ingredient, while the second tunes the remaining
analysis settings for each ingredient (e.g., whether backward analysis should
be enabled). Parameters idom and iset control the number of iterations of each
phase. Note that we start with a search for the best domains since they have the
largest impact on the precision and performance of the analysis.

During the first phase, the algorithm initializes the best recipe recbest with
an initial recipe recinit (line 3). The cost of this recipe is evaluated with function
Evaluate, which implements the recipe evaluator from Fig. 1. The subsequent
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nested loop (line 5) samples a number of recipes, starting with the shortest
recipes (l := 1) and ending with the longest recipes (l := lmax ). The inner loop
generates idom ingredients for each ingredient in the recipe (i.e., idom · l total
iterations) by invoking function GenerateRecipe, and in case a recipe with
lower cost is found, it updates the best recipe (lines 9–10). Several optimization
algorithms, such as hill climbing and simulated annealing, search for an optimal
result by mutating some of the intermediate results. Variable reccurr stores in-
termediate recipes to be mutated, and function Accept decides when to update
it (lines 11–12).

As explained earlier, the purpose of the first phase is to identify the best
sequence of abstract domains. The second phase (lines 13–18) focuses on tuning
the other settings of the best recipe so far. This is done by randomly mutating
the best recipe via MutateSettings (line 15), and updating the best recipe if
better settings are found (lines 17–18). After exploring iset random settings, the
best recipe is returned to the user (line 19).

4.2 Recipe Evaluation

The recipe evaluator from Fig. 1 uses a cost function to determine the quality
of a fresh recipe with respect to the precision and performance of the abstract
interpreter. This design is motivated by the fact that analysis imprecision and
inefficiency are among the top pain points for users [10].

Therefore, the cost function depends on the number of generated warnings
w (that is, the number of unverified assertions), the total number of assertions
in the code wtotal , the resource consumption r of the analyzer, and the resource
limit rmax imposed on the analyzer:

cost(w,wtotal , r, rmax ) =


w +

r

rmax

wtotal
, if r ≤ rmax

∞, otherwise

Note that w and r are measured by invoking the abstract interpreter with the
recipe under evaluation. The cost function evaluates to a lower cost for recipes
that improve the precision of the abstract interpreter (due to the term w/wtotal).
In case of ties, the term r/rmax causes the function to evaluate to a lower cost
for recipes that result in a more efficient analysis. In other words, for two recipes
resulting in equal precision, the one with the smaller resource consumption is
assigned a lower cost. When a recipe causes the analyzer to exceed the resource
limit, it is assigned infinite cost.

4.3 Recipe Generation

In the literature, there is a broad range of optimization algorithms for different
application domains. To demonstrate the generality and effectiveness of tAIlor,
we instantiate it with four adaptations of three well-known optimization algo-
rithms, namely random sampling [38], hill climbing (with regular restarts) [48],
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and simulated annealing [39,36]. Here, we describe these algorithms in detail,
and in Sect. 5, we evaluate their effectiveness.

Before diving into the details, let us discuss the suitability of different kinds
of optimization algorithms for our domain. There are algorithms that leverage
mathematical properties of the function to be optimized, e.g., by computing
derivatives as in Newton’s iterative method. Our cost function, however, is eval-
uated by running an abstract interpreter, and thus, it is not differentiable or
continuous. This constraint makes such analytical algorithms unsuitable. More-
over, evaluating our cost function is expensive, especially for precise abstract
domains such as Polyhedra. This makes algorithms that require a large number
of samples, such as genetic algorithms, less practical.

Now recall that Alg. 1 is parametric in how new recipes are generated (with
GenerateRecipe) and accepted for further mutations (with Accept). Instan-
tiations of these functions essentially constitute our search strategy for a tailored
recipe. In the following, we discuss four such instantiations. Note that, in theory,
the order of recipe ingredients matters. This is because any properties verified by
one ingredient are converted into assumptions for the next, and different assump-
tions may lead to different verification results. Therefore, all our instantiations
are able to explore different ingredient orderings.

Random sampling. Random sampling (rs) just generates random recipes
of a certain length. Function Accept always returns false as each recipe is
generated from scratch, and not as a result of any mutations.

Domain-aware random sampling. rs might generate recipes containing
abstract domains of comparable precision. For instance, the Octagons domain is
typically strictly more precise than Intervals. Thus, a recipe consisting of these
domains is essentially equivalent to one containing only Octagons.

Now, assume that we have a partially ordered set (poset) of domains that
defines their ordering in terms of precision. An example of such a poset for a
particular abstract interpreter is shown in Fig. 3. An optimization algorithm
can then leverage this information to reduce the search space of possible recipes.
Given such a poset, we therefore define domain-aware random sampling (dars),
which randomly samples recipes that do not contain abstract domains of com-
parable precision. Again, Accept always returns false.

Simulated annealing. Simulated annealing (sa) searches for the best recipe
by mutating the current recipe reccurr in Alg. 1. The resulting recipe (recnext),
if accepted on line 12, becomes the new recipe to be mutated. Alg. 2 shows an
instantiation of GenerateRecipe, which mutates a given recipe such that the
poset precision constraints are satisfied (i.e., there are no domains of compara-
ble precision). A recipe is mutated either by adding new ingredients with 20%
probability or by modifying existing ones with 80% probability (line 2). The
probability of adding ingredients is lower to keep recipes short.

When adding a new ingredient (lines 4–5), Alg. 2 calls RandomPosetLeast-
Incomparable, which considers all domains that are incomparable with the
domains in the recipe. Given this set, it randomly selects from the domains with
the least precision to avoid adding overly expensive domains. When modifying
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Algorithm 2: A recipe-generator instantiation.

1 Function GenerateRecipe(rec, lmax ) is
2 act := RandomAction({ADD: 0.2, MOD: 0.8}))
3 if act = ADD ∧ Len(rec) < lmax then
4 ingrnew := RandomPosetLeastIncomparable(rec)
5 recmut := AddIngredient(rec, ingrnew )

6 else
7 ingr := RandomIngredient(rec)
8 actm := RandomAction({GT: 0.5, LT: 0.3, INC: 0.2})
9 if actm = GT then

10 ingrnew := PosetGreaterThan(ingr)
11 else if actm = LT then
12 ingrnew := PosetLessThan(ingr)
13 else
14 recrem := RemoveIngredient(rec, ingr)
15 ingrnew := RandomPosetLeastIncomparable(recrem)

16 recmut := ReplaceIngredient(rec, ingr , ingrnew )

17 if ¬PosetCompatible(recmut) then
18 recmut := GenerateRecipe(rec, lmax )

19 return recmut

a random ingredient in the recipe (lines 7–16), the algorithm can replace its
domain with one of three possibilities: a domain that is immediately more pre-
cise (i.e., not transitively) in the poset (via PosetGreaterThan), a domain
that is immediately less precise (via PosetLessThan), or an incomparable do-
main with the least precision (via RandomPosetLeastIncomparable). If the
resulting recipe does not satisfy the poset precision constraints, our algorithm
retries to mutate the original recipe (lines 17–18).

For simulated annealing, Accept returns true if the new cost (for the mu-
tated recipe) is less than the current cost. It also accepts recipes whose cost
is higher with a certain probability, which is inversely proportional to the cost
increase and the number of explored recipes. That is, recipes with a small cost
increase are likely to be accepted, especially at the beginning of the exploration.

Hill climbing. Our instantiation of hill climbing (hc) performs regular
restarts. In particular, it starts with a randomly generated recipe that satis-
fies the poset precision constraints, generates 10 new valid recipes, and restarts
with a random recipe. Accept returns true only if the new cost is lower than
the best cost, which is equivalent to the current cost.

5 Experimental Evaluation

To evaluate our technique, we aim to answer the following research questions:

RQ1: Is our technique effective in tailoring recipes to different usage scenarios?
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RQ2: Are the tailored recipes optimal?
RQ3: How diverse are the tailored recipes?
RQ4: How resilient are the tailored recipes to code changes?

5.1 Implementation

We implemented tAIlor by extending Crab [25], a parametric framework for
modular construction of abstract interpreters8. We extended Crab with the
ability to pass verification results between recipe ingredients as well as with the
four optimization algorithms discussed in Sect. 4.3.

Tab. 1 shows all settings and values used in our evaluation. The first three
settings refer to the strategies discussed in Sect. 3 for mitigating the precision
loss incurred by widening. For the initial recipe, tAIlor uses Intervals and the
Crab default values for all other settings (in bold in the table). To make the
search more efficient, we selected a representative subset of all possible setting
values.

Crab uses a DSA-based [26] pointer analysis and can, optionally, reason
about array contents using array smashing. It offers a wide range of logico-
numerical domains, shown in Fig. 3. The bool domain is the flat Boolean do-
main, ric is a reduced product of Intervals and Congruence, and term(int)

and term(disInt) are instantiations of the Term domain with intervals and
disInt, respectively. Although Crab provides a bottom-up inter-procedural
analysis, we use the default intra-procedural analysis; in fact, most analyses de-
ployed in real usage scenarios are intra-procedural due to time constraints [10].

5.2 Benchmark Selection

For our evaluation, we systematically selected popular and (at some point) active
C projects on GitHub. In particular, we chose the six most starred C reposito-
ries with over 300 commits that we could successfully build with the Clang-5.0
compiler. We give a short description of each project in Tab. 2.

For analyzing these projects, we needed to introduce properties to be verified.
We, thus, automatically instrumented these projects with four types of assertions

Table 1: Crab settings and their possible values as used in our exper-
iments. Default settings are shown in bold.

Setting Possible Values

NUM DELAY WIDEN {1, 2, 4, 8, 16}
NUM NARROW ITERATIONS {1,2, 3, 4}
NUM WIDEN THRESHOLDS {0, 10, 20, 30, 40}
Backward Analysis {OFF,ON }
Array Smashing {OFF ,ON}
Abstract Domains all domains in Fig. 3

8Crab is available at https://github.com/seahorn/crab.

https://github.com/seahorn/crab
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Table 2: Overview of projects.

Project Description

curl Tool for transferring data by URL
darknet Convolutional neural-network framework
ffmpeg Multimedia processing tool
git Distributed version-control tool
php-src PHP interpreter
redis Persistent in-memory database

that check for common bugs; namely, division by zero, integer overflow, buffer
overflow, and use after free. Introducing assertions to check for runtime errors
such as these is common practice in program analysis and verification.

As projects consist of different numbers of files, to avoid skewing the results
in favor of a particular project, we randomly and uniformly sampled 20 LLVM-
bitcode files from each project, for a total of 120. To ensure that each file was
neither too trivial nor too difficult for the abstract interpreter, we used the num-
ber of assertions as a complexity indicator and only sampled files with at least 20
assertions and at most 100. Additionally, to guarantee all four assertion types
were included and avoid skewing the results in favor of a particular assertion
type, we required that the sum of assertions for each type was at least 70 across
all files—this exact number was largely determined by the benchmarks.

Overall, our benchmark suite of 120 files totals 1346 functions, 5557 assertions
(on average 4 assertions per function), and 667927 LLVM instructions (Tab. 3).

5.3 Results

We now present our experimental results for each research question. We per-
formed all experiments on a 32-core Intel ® Xeon ® E5-2667 v2 CPU @ 3.30GHz
machine with 264GB of memory, running Ubuntu 16.04.1 LTS.

RQ1: Is our technique effective in tailoring recipes to different us-
age scenarios? We instantiated tAIlor with the four optimization algorithms

boxes

term(disInt)

disInt

polyhedra

octagons

zones term(int) ric

intervals bool

Figure 3: Comparing logico-numerical domains in Crab. A domain d1
is less precise than d2 if there is a path from d1 to d2 going upward,
otherwise d1 and d2 are incomparable.
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Table 3: Benchmark characteristics (20 files per project). The last
three columns show the number of functions, assertions, and LLVM
instructions in the analyzed files.

Project Functions Assertions LLVM Instructions

curl 306 787 50 541
darknet 130 958 55 847
ffmpeg 103 888 27 653
git 218 768 102 304
php-src 268 1031 305 943
redis 321 1125 125 639

Total 1346 5557 667 927

described in Sect. 4.3: rs, dars, sa, and hc. We constrained the analysis time
to simulate two usage scenarios: 1 sec for instant feedback in the editor, and
5 min for feedback in a CI pipeline. We compare tAIlor with the default recipe
(def), i.e., the default settings in Crab as defined by its designer after careful
tuning on a large set of benchmarks over the years. def uses a combination
of two domains, namely, the reduced product of Boolean and Zones. The other
default settings are in Tab. 1.

For this experiment, we ran tAIlor with each optimization algorithm on
the 120 benchmark files, enabling optimization at the granularity of files. Each
algorithm was seeded with the same random seed. In Alg. 1, we restrict recipes
to contain at most 3 domains (lmax = 3) and set the number of iterations for
each phase to be 5 and 10 (idom = 5 and iset = 10).

The results are presented in Fig. 4, which shows the number of assertions
that are verified with the best recipe found by each algorithm as well as by
the default recipe. All algorithms outperform the default recipe for both usage
scenarios, verifying almost twice as many assertions on average. The random-
sampling algorithms are shown to find better recipes than the others, with dars
being the most effective. Hill climbing is less effective since it gets stuck in local
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Figure 4: Comparison of the number of assertions verified with the
best recipe generated by each optimization algorithm and with the
default recipe, for varying timeouts.
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Figure 5: Comparison of the number of assertions verified by a tailored
vs. the default recipe.

cost minima despite restarts. Simulated annealing is the least effective because it
slowly climbs up the poset toward more precise domains (see Alg. 2). However, as
we explain later, we expect the algorithms to converge on the number of verified
assertions for more iterations.

Fig. 5 gives a more detailed comparison with the default recipe for the time
limit of 5 min. In particular, each horizontal bar shows the total number of as-
sertions verified by each algorithm. The orange portion represents the assertions
verified by both the default recipe and the optimization algorithm, while the
green and red portions represent the assertions only verified by the algorithm
and default recipe, respectively. These results show that, in addition to verify-
ing hundreds of new assertions, tAIlor is able to verify the vast majority of
assertions proved by the default recipe, regardless of optimization algorithm.

In Fig. 6, we show the total time each algorithm takes for all iterations. dars
takes the longest. This is due to generating more precise recipes thanks to its
domain knowledge. Such recipes typically take longer to run but verify more
assertions (as in Fig. 4). On average, for all algorithms, tAIlor requires only
30 sec to complete all iterations for the 1-sec timeout and 16 min for the 5-min
timeout. As discussed in Sect. 2, this tuning time can be spent offline.

Fig. 7 compares the total number of assertions verified by each algorithm
when tAIlor runs for 40 (idom = 5 and iset = 10) and 80 (idom = 10 and iset =
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Figure 6: Comparison of the total time (in sec) that each algorithm
requires for all iterations, for varying timeouts.
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Figure 7: Comparison of the number of assertions verified with the
best recipe generated by the different optimization algorithms, for
different numbers of iterations.

20) iterations. The results show that only a relatively small number of additional
assertions are verified with 80 iterations. In fact, we expect the algorithms to
eventually converge on the number of verified assertions, given the time limit
and precision of the available domains.

As dars performs best in this comparison, we only evaluate dars in the
remaining research questions. We use a 5-min timeout.

RQ1 takeaway: tAIlor verifies between 1.6 − 2.1× the assertions
of the default recipe, regardless of optimization algorithm, timeout,
or number of iterations. In fact, even very simple algorithms (such as
rs) significantly outperform the default recipe.

RQ2: Are the tailored recipes optimal? To check the optimality of the
tailored recipes, we compared them with the most precise (and least efficient)
Crab configuration. It uses the most precise domains from Fig. 3 (i.e., bool,
polyhedra, term(int), ric, boxes, and term(disInt)) in a recipe of 6 ingre-
dients and assigns the most precise values to all other settings from Tab. 1. We
generously gave a 30-min timeout to this recipe.

For 21 out of 120 files, the most precise recipe ran out of memory (264GB).
For 86 files, it terminated within 5 min, and for 13, it took longer (within
30 min)—in many cases, this was even longer than tAIlor’s tuning time in
Fig. 6. We compared the number of assertions verified by our tailored recipes
(which do not exceed 5 min) and by the most precise recipe. For the 86 files that
terminated within 5 min, our recipes prove 618 assertions, whereas the most
precise recipe proves 534. For the other 13 files, our recipes prove 119 assertions,
whereas the most precise recipe proves 98.

Consequently, our (in theory) less precise and more efficient recipes prove
more assertions in files where the most precise recipe terminates. Possible expla-
nations for this non-intuitive result are: (1) Polyhedra coefficients may overflow,
in which case the constraints are typically ignored by abstract interpreters, and
(2) more precise domains with different widening operations may result in less
precise results [45,2].
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Figure 8: Effect of different settings on the precision and performance
of the abstract interpreter. (dw: NUM DELAY WIDEN, ni: NUM NARROW -

ITERATIONS, wt: NUM WIDEN THRESHOLDS, as: array smashing, b: backward
analysis, d: abstract domain, o: ingredient ordering).

We also evaluated the optimality of tailored recipes by mutating individual
parts of the recipe and comparing to the original. In particular, for each setting
in Tab. 1, we tried all possible values and replaced each domain with all other
comparable domains in the poset of Fig. 3. For example, for a recipe including
zones, we tried octagons, polyhedra, and intervals. In addition, we tried
all possible orderings of the recipe ingredients, which in theory could produce
different results. We observed whether these changes resulted in a difference in
the precision and performance of the analyzer.

Fig. 8 shows the results of this experiment, broken down by setting. Equal (in
orange) indicates that the mutated recipe proves the same number of assertions
within ±5 seconds of the original. Positive (in green) indicates that it either
proves more assertions or the same number of assertions at least 5 seconds faster.
Negative (in red) indicates that the mutated recipe either proves fewer assertions
or the same number of assertions at least 5 seconds slower.

The results show that, for our benchmarks, mutating the recipe found by
tAIlor rarely led to an improvement. In particular, at least 93% of all mutated
recipes were either equal to or worse than the original recipe. In the majority
of these cases, mutated recipes are equally good. This indicates that there are
many optimal or close-to-optimal solutions and that tAIlor is able to find one.

RQ2 takeaway: As compared to the most precise recipe, tAIlor
verified more assertions across benchmarks where the most precise
recipe terminated. Furthermore, mutating recipes found by tAIlor
resulted in improvement only for less than 7% of recipes.

RQ3: How diverse are the tailored recipes? To motivate the need for
optimization, we must show that tailored recipes are sufficiently diverse such that
they could not be replaced by a well-crafted default recipe. To better understand
the characteristics of tailored recipes, we manually inspected all of them.

tAIlor generated recipes of length greater than 1 for 61 files. Out of these,
37 are of length 2 and 24 of length 3. For 77% of generated recipes, NUM DELAY -
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Figure 9: Occurrence of domains (in %) in the best recipes for all
assertion types.

WIDEN is not set to the default value of 1. Additionally, 55% of the ingredients
enable array smashing, and 32% enable backward analysis.

Fig. 9 shows how often (in percentage) each abstract domain occurs in a
best recipe found by tAIlor. We observe that all domains occur almost equally
often, with 6 of the 10 domains occurring in between 9% and 13% of recipes. The
most common domain was bool at 18%, and the least common was intervals

at 4%. We observed a similar distribution of domains even when instrumenting
the benchmarks with only one assertion type, e.g., checking for integer overflow.

We also inspected which domain combinations are frequently used in the tai-
lored recipes. One common pattern is combinations between bool and numerical
domains (18 occurrences). Similarly, we observed 2 occurrences of term(disInt)
together with zones. Interestingly, the less powerful variants of combining disInt

with zones (3 occurrences) and term(int) with zones (6 occurrences) seem to
be sufficient in many cases. Finally, we observed 8 occurrences of polyhedra or
octagons with boxes, which are the most precise convex and non-convex do-
mains. Our approach is, thus, not only useful for users, but also for designers of
abstract interpreters by potentially inspiring new domain combinations.

RQ3 takeaway: The diversity of tailored recipes prevents replacing
them with a single default recipe. Over half of the tailored recipes
contain more than one ingredient, and ingredients use a variety of
domains and their settings.

RQ4: How resilient are the tailored recipes to code changes? We
expect tailored recipes to be resilient to code changes, i.e., to retain their opti-
mality across several changes without requiring re-tuning. We now evaluate if a
recipe tailored for one code version is also tailored for another, even when the
two versions are 50 commits apart.

For this experiment, we took a random sample of 60 files from our benchmarks
and retrieved the 50 most recent commits per file. We only sampled 60 out of
120 files as building these files for each commit is quite time consuming—it can
take up to a couple of days. We instrumented each file version with the four
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Figure 10: Difference in the safe assertions across commits.

assertion types described in Sect. 5.2. It should be noted that, for some files, we
retrieved fewer than 50 versions either because there were fewer than 50 total
commits or our build procedure for the project failed on older commits. This is
also why we did not run this experiment for over 50 commits.

We analyzed each file version with the best recipe, Ro, found by tAIlor for
the oldest file version. We compared this recipe with new best recipes, Rn, that
were generated by tAIlor when run on each subsequent file version. For this
experiment, we used a 5-min timeout and 40 iterations.

Note that, when running tAIlor with the same optimization algorithm and
random seed, it explores the same recipes. It is, therefore, very likely that recipe
Ro for the oldest commit is also the best for other file versions since we only
explore 40 different recipes. To avoid any such bias, we performed this experiment
by seeding tAIlor with a different random seed for each commit. The results
are shown in Fig. 10.

In Fig. 10, we give a bar chart comparing the number of files per commit
that have a positive, equal, and negative difference in the number of verified
assertions, where commit 0 is the oldest commit and 49 the newest. An equal
difference (in orange) means that recipe Ro for the oldest commit proves the
same number of assertions in the current file version, fn, as recipe Rn found by
running tAIlor on fn. To be more precise, we consider the two recipes to be
equal if they differ by at most 1 verified assertion or 1% of verified assertions since
such a small change in the number of safe assertions seems acceptable in practice
(especially given that the total number of assertions may change across commits).
A positive difference (in green) means that Ro achieves better verification results
than Rn, that is, Ro proves more assertions safe (over 1 assertion or 1% of the
assertions that Rn proves). Analogously, a negative difference (in red) means
that Ro proves fewer assertions. We do not consider time here because none of
the recipes timed out when applied on any file version.

Note that the number of files decreases for newer commits. This is because
not all files go forward by 50 commits, and even if they do, not all file versions
build. However, in a few instances, the number of files increases going forward
in time. This happens for files that change names, and later, change back, which
we do not account for.
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For the vast majority of files, using recipe Ro (found for the oldest commit)
is as effective as using Rn (found for the current commit). The difference in safe
assertions is negative for less than a quarter of the files tested, with the average
negative difference among these files being around 22% (i.e., Ro proved 22%
fewer assertions than Rn in these files). On the remaining three quarters of the
files tested however, Ro proves at least as many assertions as Rn, and thus, Ro

tends to be tailored across code versions.

Commits can result in both small and large changes to the code. We there-
fore also measured the average difference in the number of verified assertions per
changed line of code with respect to the oldest commit. For most files, regardless
of the number of changed lines, we found that Ro and Rn are equally effective,
with changes to 1000 LOC or more resulting in little to no loss in precision. In
particular, the median difference in safe assertions across all changes between
Ro and Rn was 0 (i.e., Ro proved the same number of assertions safe as Rn),
with a standard deviation of 15 assertions. We manually inspected a handful
of outliers where Ro proved significantly fewer assertions than Rn (difference
of over 50 assertions). These were due to one file from git where Ro is not as
effective because the widening and narrowing settings have very low values.

RQ4 takeaway: For over 75% of files, tAIlor’s recipe for a previous
commit (from up to 50 commits previous) remains tailored for future
versions of the file, indicating the resilience of tailored recipes across
code changes.

5.4 Threats to Validity

We have identified the following threats to the validity of our experiments.

Benchmark selection. Our results may not generalize to other benchmarks.
However, we selected popular GitHub projects from different application do-
mains (see Tab. 2). Hence, we believe that our benchmark selection mitigates
this threat and increases generalizability of our findings.

Abstract interpreter and recipe settings. For our experiments, we only
used a single abstract interpreter, Crab, which however is a mature and actively
supported tool. The selection of recipe settings was, of course, influenced by the
available settings in Crab. Nevertheless, Crab implements the generic archi-
tecture of Fig. 2, used by most abstract interpreters, such as those mentioned
at the beginning of Sect. 3. We, therefore, expect our approach to generalize to
such analyzers.

Optimization algorithms. We considered four optimization algorithms,
but in Sect. 4.3, we explain why these are suitable for our application domain.
Moreover, tAIlor is configurable with respect to the optimization algorithm.

Assertion types. Our results are based on four types of assertions. However,
these cover a wide range of runtime errors that are commonly checked by static
analyzers.
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6 Related Work

The impact of different abstract-interpretation configurations has been previ-
ously evaluated [54] for Java programs and partially inspired this work. To the
best of our knowledge, we are the first to propose tailoring abstract interpreters
to custom usage scenarios using optimization.

However, optimization is a widely used technique in many engineering dis-
ciplines. In fact, it is also used to solve the general problem of algorithm confi-
guration [31], of which there exist numerous instantiations, for instance, to
tune hyper-parameters of learning algorithms [3,52,18] and options of constraint
solvers [33,32]. Existing frameworks for algorithm configuration differ from ours
in that they are not geared toward problems that are solved by sequences of
algorithms, such as analyses with different abstract domains. Even if they were,
our experience with tAIlor shows that there seem to be many optimal or close-
to-optimal configurations, and even very simple optimization algorithms such as
rs are surprisingly effective (see RQ2); similar observations were made about
the effectiveness of random search in hyper-parameter tuning [4].

In the rest of this section, we focus on the use of optimization in program
analysis. It has been successfully applied to a number of program-analysis prob-
lems, such as automated testing [19,20], invariant inference [50], and compiler
optimizations [49].

Recently, researchers have started to explore the direction of enriching pro-
gram analyses with machine-learning techniques, for example, to automatically
learn analysis heuristics [27,34,47,51]. A particularly relevant body of work is on
adaptive program analysis [28,29,30], where existing code is analyzed to learn
heuristics that trade soundness for precision or that coarsen the analysis abstrac-
tions to improve memory consumption. More specifically, adaptive program anal-
ysis poses different static-analysis problems as machine-learning problems and
relies on Bayesian optimization to solve them, e.g., the problem of selectively
applying unsoundness to different program components (e.g., different loops in
the program) [30]. The main insight is that program components (e.g., loops)
that produce false positives are alike, predictable, and share common proper-
ties. After learning to identify such components for existing code, this technique
suggests components in unseen code that should be analyzed unsoundly.

In contrast, tAIlor currently does not adjust soundness of the analysis.
However, this would also be possible if the analyzer provided the corresponding
configurations. More importantly, adaptive analysis focuses on learning analysis
heuristics based on existing code in order to generalize to arbitrary, unseen code.
tAIlor, on the other hand, aims to tune the analyzer configuration to a custom
usage scenario, including a particular program under analysis. In addition, the
custom usage scenario imposes user-specific resource constraints, for instance by
limiting the time according to a phase of the software-engineering life cycle. As
we show in our experiments, the tuned configuration remains tailored to several
versions of the analyzed program. In fact, it outperforms configurations that are
meant to generalize to arbitrary programs, such as the default recipe.
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7 Conclusion

In this paper, we have proposed a technique and framework that tailors a generic
abstract interpreter to custom usage scenarios. We instantiated our framework
with a mature abstract interpreter to perform an extensive evaluation on real-
world benchmarks. Our experiments show that the configurations generated by
tAIlor are vastly better than the default options, vary significantly depend-
ing on the code under analysis, and typically remain tailored to several subse-
quent code versions. In the future, we plan to explore the challenges that an
inter-procedural analysis would pose, for instance, by using a different recipe for
computing a summary of each function or each calling context.
Acknowledgements. We are grateful to the reviewers for their constructive
feedback. This work was supported by DFG grant 389792660 as part of TRR 248
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D., Rival, X.: A static analyzer for large safety-critical software. In: PLDI. pp. 196–
207. ACM (2003)

6. Brat, G., Navas, J.A., Shi, N., Venet, A.: IKOS: A framework for static analysis
based on abstract interpretation. In: SEFM. LNCS, vol. 8702, pp. 271–277. Springer
(2014)

7. Calcagno, C., Distefano, D.: Infer: An automatic program verifier for memory safety
of C programs. In: NFM. LNCS, vol. 6617, pp. 459–465. Springer (2011)

8. Calcagno, C., Distefano, D., Dubreil, J., Gabi, D., Hooimeijer, P., Luca, M.,
O’Hearn, P.W., Papakonstantinou, I., Purbrick, J., Rodriguez, D.: Moving fast
with software verification. In: NFM. LNCS, vol. 9058, pp. 3–11. Springer (2015)

9. Chang, B.E., Leino, K.R.M.: Abstract interpretation with alien expressions and
heap structures. In: VMCAI. LNCS, vol. 3385, pp. 147–163. Springer (2005)

10. Christakis, M., Bird, C.: What developers want and need from program analysis:
An empirical study. In: ASE. pp. 332–343. ACM (2016)

11. Cousot, P., Cousot, R.: Static determination of dynamic properties of programs.
In: ISOP. pp. 106–130. Dunod (1976)

12. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: POPL. pp.
238–252. ACM (1977)

13. Cousot, P., Cousot, R.: Abstract interpretation and application to logic programs.
JLP 13, 103–179 (1992)

https://perspicuous-computing.science
http://www.inrialpes.fr/pop-art/people/bjeannet/bjeannet-forge/bddapron
http://www.inrialpes.fr/pop-art/people/bjeannet/bjeannet-forge/bddapron


22 M. N. Mansur et al.

14. Cousot, P., Cousot, R.: Comparing the Galois connection and widening/narrowing
approaches to abstract interpretation. In: PLILP. LNCS, vol. 631, pp. 269–295.
Springer (1992)

15. Cousot, P., Cousot, R.: Refining model checking by abstract interpretation. Autom.
Softw. Eng. 6, 69–95 (1999)

16. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables
of a program. In: POPL. pp. 84–96. ACM (1978)

17. Fähndrich, M., Logozzo, F.: Static contract checking with abstract interpretation.
In: FoVeOOS. LNCS, vol. 6528, pp. 10–30. Springer (2010)

18. Falkner, S., Klein, A., Hutter, F.: BOHB: Robust and efficient hyperparameter
optimization at scale. In: ICML. PMLR, vol. 80, pp. 1436–1445. PMLR (2018)

19. Fu, Z., Su, Z.: Mathematical execution: A unified approach for testing numerical
code. CoRR abs/1610.01133 (2016)

20. Fu, Z., Su, Z.: Achieving high coverage for floating-point code via unconstrained
programming. In: PLDI. pp. 306–319. ACM (2017)

21. Gange, G., Navas, J.A., Schachte, P., Søndergaard, H., Stuckey, P.J.: An abstract
domain of uninterpreted functions. In: VMCAI. LNCS, vol. 9583, pp. 85–103.
Springer (2016)

22. Gershuni, E., Amit, N., Gurfinkel, A., Narodytska, N., Navas, J.A., Rinetzky, N.,
Ryzhyk, L., Sagiv, M.: Simple and precise static analysis of untrusted Linux kernel
extensions. In: PLDI. pp. 1069–1084. ACM (2019)

23. Granger, P.: Static analysis of arithmetical congruences. International Journal of
Computer Mathematics 30, 165–190 (1989)

24. Gurfinkel, A., Chaki, S.: Boxes: A symbolic abstract domain of boxes. In: SAS.
LNCS, vol. 6337, pp. 287–303. Springer (2010)

25. Gurfinkel, A., Kahsai, T., Komuravelli, A., Navas, J.A.: The SeaHorn verification
framework. In: CAV. LNCS, vol. 9206, pp. 343–361. Springer (2015)

26. Gurfinkel, A., Navas, J.A.: A context-sensitive memory model for verification of
C/C++ programs. In: SAS. LNCS, vol. 10422, pp. 148–168. Springer (2017)

27. Heo, K., Oh, H., Yang, H.: Learning a variable-clustering strategy for octagon from
labeled data generated by a static analysis. In: SAS. LNCS, vol. 9837, pp. 237–256.
Springer (2016)

28. Heo, K., Oh, H., Yang, H.: Resource-aware program analysis via online abstraction
coarsening. In: ICSE. pp. 94–104. IEEE Computer Society/ACM (2019)

29. Heo, K., Oh, H., Yang, H., Yi, K.: Adaptive static analysis via learning with
Bayesian optimization. TOPLAS 40, 14:1–14:37 (2018)

30. Heo, K., Oh, H., Yi, K.: Machine-learning-guided selectively unsound static anal-
ysis. In: ICSE. pp. 519–529. IEEE Computer Society/ACM (2017)

31. Hutter, F.: Automated Configuration of Algorithms for Solving Hard Computa-
tional Problems. Ph.D. thesis, The University of British Columbia, Canada (2009)

32. Hutter, F., Babic, D., Hoos, H.H., Hu, A.J.: Boosting verification by automatic
tuning of decision procedures. In: FMCAD. pp. 27–34. IEEE Computer Society
(2007)
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